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Abstract—In this letter, we provide a detailed characteri-
zation of the equilibria and bifurcations of two-dimensional
linear-threshold models. Using the input to the system as
the bifurcation parameter, we characterize the location of
the admissible equilibria, show that bifurcations can arise
only when equilibria lie on the boundary of well-defined
regions of the state space, and prove that (codimension-
one) bifurcations can only be of three different types:
persistent, non-smooth fold, and Hopf. We show how these
bifurcations change the qualitative properties of the system
trajectories, and how these behaviors resemble prototypi-
cal patterns of EEG activity observed before, during, and
after seizure events in the human brain. Our findings sug-
gest that low-dimensional linear threshold models can
effectively be used to model, analyze, predict, and ulti-
mately regulate the interactions of neuronal populations in
the human brain.

Index Terms—Network analysis and control, stability of
nonlinear systems, switched systems.

I. INTRODUCTION

EPILEPTIC seizures are characterized by an excessive and
abnormal neuronal activity in the brain. Given the severity

of this condition and its diffusion (10% of people world-
wide experience at least one seizure episode in their lifetime),
there has been a shared effort among different scientific com-
munities to understand and fight this disease. Thanks to the
wide availability of electroencephalogram (EEG) readings of
healthy and epileptic brains, several mathematical models aim-
ing at characterizing and describing these behaviors have been
proposed. Despite the large variety of waveforms observed in
EEG signals, most phenomena can be characterized by a small
number of typical recurring waveforms [1].
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Meso-to-macroscopic models reproduce the global activity
of clusters of neurons through their firing rate, as opposed
to reproducing the neuron’s individual spiking as done in
microscopic models. The former approach benefits from a
lower-dimensional system of otherwise complex dynamics and
is referred to as neural mass modeling [2]. In particular, linear
threshold networks (LTNs) are commonly used in computa-
tional neuroscience to model various cognitive phenomena in
the brain, see [3], [4] and references therein. In this letter we
characterize the properties of equilibria and bifurcations of pla-
nar LTNs, and show how the qualitative behaviors induced by
these bifurcations closely maps to the waveforms observed in
EEG signals collected before, during, and after seizure events.

Related work: The idea of using dynamical models to
interpret and understand epileptic events is not new. Prior work
include the Jansen and Rit model [5], [6], the Epileptor [7],
and the well known Wilson-Cowan model, with a sigmoidal
activation function, in [8]–[11]. Other notable results can be
found, for instance, in [2], [12]–[14] and the references therein.
Differently from these studies, we consider LTNs, which fol-
low a piecewise-smooth flow [15], [16] and have been used
to model a variety of brain activities [3], [4]. LTNs are also
amenable to analytical study, a feature that sets them apart
from other frameworks.

From a technical perspective, we rely on the rich the-
ory of bifurcations of dynamical systems, which is well
developed for smooth vector fields, e.g., see [17]. While
results also exist to characterize the bifurcations of piecewise-
smooth vector fields [18]–[20], a comprehensive theory is
still lacking. Our results contribute to the development of
this field by providing a characterization of the bifurcations
of LTNs.

Paper contribution: The contributions of this letter are
two-fold. First, using the input to the system as bifurcation
parameter, we give a detailed analysis of the bifurcations
occurring in planar LTNs. We derive explicit conditions on
the parameters of the model to draw a set of different bifurca-
tion diagrams, and study the qualitatively different behaviors
that emerge in their phase diagrams. Second, we associate the
behaviors originating from these bifurcations to prototypical
waveforms observed in EEG signals during epileptic activities.
This creates an effective map to understand epileptic features
from the underlying dynamics, and paves the way to designing
remedial controls.
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Fig. 1. Phase plot, regions of the state space, and nullclines for (2) with W = [2, −2; 5, −2.5] and m = 2 · 12. By changing u, the system exhibits
different behaviors as equilibria may appear, disappear, and relocate in the state space. Higher (lower) values of u1 (u2) translate the x1-nullcline
N1 in red (x2-nullcline, N2, in blue) along the positive direction of x2 (negative direction of x1).

Notation: Throughout this letter we use R, R≥0, and R≤0
to denote the set of reals, nonnegative reals and nonposi-
tive reals, respectively. We use bold letters for vectors and
matrices. The identity matrix is denoted by I. Given a vec-
tor x ∈ R

n, we use xi to refer to its ith component. For
x ∈ R and m ∈ R≥0, [x]m

0 = min{max{x, 0}, m}, which is
the projection of x onto [0, m]. Similarly, when x ∈ R

n and
m ∈ R

n
≥0, [x]m

0 = [[x1]m1
0 . . . [xn]mn

0 ]T . The open ball in R
n

with radius ε > 0 centered at x ∈ R
n is denoted by Bε(x) =

{y ∈ R
n | ‖y − x‖ < ε}.

II. PROBLEM FORMULATION

We model the interactions between populations of neurons
trough a dynamical network with a nonlinear activation func-
tion, see [21]. Let x be the vector where each component
represents the firing rate of a population of neurons, and
W ∈ R

n×n be the synaptic weight matrix. The firing rates
evolve according to a linear threshold model:

ẋ = −x(t) + [Wx(t) + u(t)]m
0 , 0 ≤ x(0) ≤ m, (1)

where m ∈ R
n
>0 ∪ {∞}n. The vector u represents an external

input to the system, such as unmodeled background activity.
Epilepsy is often described as an abrupt intermittent tran-

sition between highly ordered and disordered states [1]. In a
dynamical systems’ context, this may correspond to a qualita-
tive change in the behavior of the system, which is typically
linked to the study of bifurcations. Evidence suggests that,
even during highly disruptive events such as seizures, the
underlying connectivity structure between neurons does not
experience a significant change in its nature, while the inputs
to the system may be altered by exogenous and endogenous
events. Following this evidence, here we study how changes in
the input to (1) can generate qualitative changes in the behavior
of the neurons firing rates.

We consider a network of excitatory and inhibitory neu-
rons with all-to-all connectivity. Specifically, we focus on the
dynamics in (1) with n = 2, where the state x1 (x2) is the
lumped activity of the population of excitatory (inhibitory)
neurons, which have positive (negative) feedforward contribu-
tion to the network. As our ensuing analysis reveals, the E-I
pair case shows much of the complexity of the general case
and is rich enough to capture a variety of epileptic behav-
iors. The dynamics of the E-I pair simplify to the following

piecewise-smooth flow (PWSF):[
ẋ1
ẋ2

]
= −

[
x1
x2

]
+

[[
a −b
c −d

][
x1
x2

]
+

[
u1
u2

]]m

0
. (2)

We note that (2) resembles the classic Wilson-Cowan
model [22] with, however, a piece-wise activation function in
place of the more common sigmoidal function.

Throughout this letter, we use the notion of nullclines to
characterize the equilibria of (1). In particular, the nullcline
set N1 = {x : ẋ1 = 0} is given by

x1 = 0, x2 ≥ u1

b
, (3a)

x1 ∈ (0, m1), x2 = a − 1

b
x1 + u1

b
, (3b)

x1 = m1, x2 ≤ a − 1

b
m1 + u1

b
. (3c)

Similarly, the nullcline set N2 = {x : ẋ2 = 0} is given by

x1 ≤ −u2

c
, x2 = 0, (4a)

x1 = d + 1

c
x2 − u2

c
, x2 ∈ (0, m2), (4b)

x1 ≥ d + 1

c
m2 − u2

c
, x2 = m2. (4c)

Fig. 1 shows how changes in the input affect the nullclines
on the plane and the resulting system behavior.

Beyond equilibria, limit cycles of (2) also play a key role
in the system experiencing a rich repertoire of bifurcations
and behaviors. The next result establishes conditions for their
existence. The original statement appeared in [4], but here
we provide a novel proof in Appendix V using the nullclines
of (2), which is consistent with the rest of this letter.

Theorem 1 (Limit Cycles in E-I Pairs) [4]: All solutions
to (2) (except the one originating from the unique unstable
equilibrium in (6)) converge to a limit cycle if and only if

d + 2 < a, (5a)

(a − 1)(d + 1) < bc, (5b)

(a − 1)m1 < bm2, (5c)

0 < u1 < bm2 − (a − 1)m1, (5d)

0 < (d + 1)u1 − bu2 < [bc − (a − 1)(d + 1)]m1. (5e)

If (5) holds, the system has a unique unstable equilibrium:

x∗ = 1

bc − (1 + d)(a − 1)

[
(1 + d)u1 − bu2
cu1 − (a − 1)u2

]
. (6)
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TABLE I
DIFFERENT TYPES OF BIFURCATION DIAGRAMS AS DISCUSSED IN THEOREM 2. THIN DASHED LINES SHOW FAMILIES OF VIRTUAL EQUILIBRIA.

THICK LINES SHOW EQUILIBRIA: THICK SOLID LINES SHOW STABLE FIXED POINTS, WHILE THICK DASHED LINES SHOW UNSTABLE FIXED
POINTS. BLACK (WHITE) SQUARE MARKERS SHOW P-BEB (NSF-BEB), WHILE CIRCLES SHOW NON-ADMISSIBLE BIFURCATION CANDIDATES.

IN CASE (D) THE MAXIMUM AND MINIMUM VALUES OF THE LIMIT CYCLE ARE SHOWN IN COLOR

III. BIFURCATION ANALYSIS

In this section we characterize the bifurcations of (2) as a
function of the external input u. We use this characterization in
Section IV to explain empirical epileptic data. In what follows,
we use the terminology and taxonomy of [18].

The phase plane is partitioned into nine regions, parameter-
ized by the parameter σ ∈ {0, �, s}2, where the dynamics are
affine. For each σ , the region is defined by

�σ = {x : (Wx + u)i ≤ 0 if σi = 0,

0 ≤ (Wx + u)i ≤ mi if σi = �,

(Wx + u)i ≥ mi if σi = s}.
Let ��

σ and �s
σ be the diagonal matrices where (��

σ )ii = 1 if
σi = �, and (�s

σ )ii = 1 if σi = s. The dynamics can be written
as ẋ = fσ (x, u) for x ∈ �σ , where

fσ (x, u) = (−I + ��
σ W)x + ��

σ u + �s
σ m.

Assumption 1: We assume that (i) det(W) 
= 0, and (ii)
det(−I + ��

σ W) 
= 0 for all σ ∈ {0, �, s}2.
Note that this assumption is not restrictive since the set

of matrices which fail to satisfy these conditions has zero
Lebesgue measure. Under these assumptions, for each u
there is a unique equilibrium candidate x∗

σ (u), such that
fσ (x∗

σ (u), u) = 0. The equilibrium candidate x∗
σ is a smooth

function of u. When x∗
σ (u) ∈ �σ , we call the candidate

admissible and x∗
σ (u) is an equilibrium of the system.

A bifurcation can occur only when x∗
σ (u) is on the boundary

of �σ . In this case, the equilibrium candidate x∗
σ overlaps with

the equilibrium candidate of another region. This observation
motivates the following definitions:

Definition 1 [Boundary Equilibrium Bifurcation (BEB)]:
We call u a bifurcation candidate if there exist σ1 
= σ2
such that x∗

σ1
(u) = x∗

σ2
(u). A boundary equilibrium bifurcation

occurs when u is a bifurcation candidate and x∗
σ is admissible

in both �σ1 and �σ2 , i.e., x∗
σ1

(u) ∈ �σ1 and x∗
σ (u) ∈ �σ2 .

Definition 2 (Types of BEBs): Suppose a boundary equilib-
rium bifurcation occurs at u. Then, u is

1) a Persistent BEB (P-BEB) if the number of equilibria is
constant in a neighborhood of u;

2) a Non-smooth fold BEB (NSF-BEB) if the number if
equilibria is not constant in a neighborhood of u;

3) a Hopf bifurcation1 if it is (locally) a NSF-BEB such
that a limit cycle emerges (globally).

We focus on codimension-one bifurcations, since they arise
more frequently in biological systems than higher-dimensional
bifurcations [12]. In particular, we choose u1 as the bifurca-
tion parameter, and leave u2 constant. An equivalent analysis
can be carried out using u2 as the bifurcation parameter and
keeping u1 constant. We next state our main theoretical result
(a proof is given in Appendix V), which characterizes explic-
itly the bifurcation diagram of (2). Because u2 is constant, we
abuse notation slightly by writing the equilibrium candidates
as a function of u1 only.

Theorem 2 (Bifurcation Diagram): Let u1 be the bifurcation
parameter of the system (2), and let

− m1c < u2 < (1 + d)m2. (7)

Then, there exist at most eight bifurcation candidates. Further,
there exist four qualitatively different bifurcation diagrams
induced by the following inequalities:

a < 1, (8a)

(a − 1)(d + 1) < bc, (8b)

a < d + 2, (8c)

In particular, the possible bifurcation diagrams are defined as
follows (see Table I for an illustration):
(A) If (8a) is satisfied, then there exists a unique equilibrium

for every u and all bifurcations are P-BEB.
(B) If inequalities (8a) and (8b) are not satisfied, then the

system has one equilibrium (for small and big values
of u1) or three equilibria. Then, bifurcations involving
the ��� region and only one other region are P-BEB.
Otherwise, bifurcations are NSF-BEB.

(C) If (8b)-(8c) are satisfied and (8a) is not satisfied, then the
bifurcation candidates involving either the region �00 or
�ss and only one other region are P-BEB. Otherwise,
bifurcations are NSF-BEB.

1As highlighted in [18], the definition of Hopf bifurcation does not gen-
eralize well to PWSF since there is no sense in which eigenvalues cross the
imaginary axis at the bifurcation onset. However, with a slight but common
abuse of terminology, we refer to a Hopf bifurcation if the only attractor in
the system is a limit cycle.
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TABLE II
EEG ACTIVITY AND FEATURES IN THE PHASE-SPACE [5]

(D) If (8b) is the only satisfied inequality, then the analysis of
BEB is equivalent to that of Case C. However, condition
(8c) makes x∗

�� an unstable fixed point resulting in a
Hopf bifurcation at u�0

00 and at u�s
ss .

Some comments are in order. First, the condition bounding
u2 limits the number of admissible equilibria to five (down
from nine). For u2 < −m1c, (resp. u2 > (1 + d)m2), we
have x2 = 0, (resp. x2 = m2), for all u1, which are of lit-
tle interest and we therefore exclude to keep the problem
tractable. When (7) holds, the 5 equilibrium candidates are:

x∗
00(u1) = 0, (9a)

x∗
�0(u1) =

(
1

1 − a
u1, 0

)
, (9b)

x∗
�s(u1) =

(
1

1 − a
u1 − bm2

1 − a
, m2

)
(9c)

x∗
��(u1) =

(
(1 + d)u1 − bu2

(1 + d)(1 − a) + bc
,

cu1 + (1 − a)u2

(1 + d)(1 − a) + bc

)
(9d)

x∗
ss(u1) = m. (9e)

We plot the five equilibria in (9) in Table I as a function of
u1 (thin-dashed lines). To make things easier to visualize, we
only show the first coordinate of the equilibrium candidates.
The first coordinate of (9a), which corresponds to the equi-
librium candidate of the region �00, is zero for every value
of u1 and is referenced as 00 in Case A of Table I. Similarly,
the first coordinate of the equilibrium candidate (9d), which
corresponds to the equilibrium candidate of the region ���,
varies linearly as a function of u1 and is referenced as �� in
Case A of Table I. A bifurcation candidate arises whenever
two of these lines intersect. Bifurcation candidates are shown
as black dots in Table I. When the equilibrium candidates are
admissible, then a BEB occurs, which is shown with a square
in Table I. Further, when the number of equilibria remains
constant on both sides of a bifurcation, a P-BEB occurs: this
can be seen, for instance, in Case A, where all bifurcations
are P-BEB (black squares). On the other hand, in Case B, the
number of admissible equilibria to the left of the bifurcation
occurring at u1 = 0 are three (x∗

00, x∗
�0 and x∗

ss), while there
is just one admissible equilibrium (x∗

ss) to its right. This is an
example of NSF-BEB, which is denoted with white squares.

IV. REPRODUCING EPILEPTIC PATTERNS

Here, we apply the results from Section III to show how lin-
ear threshold pairs can be used to model epileptic seizures. To
obtain EEG-like waveforms from the linear threshold model,
we simulate the dynamics in (2) by adding noise w in the
linear threshold function:

ẋ = −x + [Wx + u + w]m
0 .

TABLE III
RELATIONSHIP BETWEEN ALL BIFURCATIONS EACH SYSTEM EXHIBITS
AND TRANSITION IN TYPE OF EEG ACTIVITY AS OUTLINED IN TABLE II

The noise w is obtained by filtering Gaussian white-noise, with
variance 1.4, through a filter with 1Hz cut-off frequency.

Although EEG measurements of the epileptic brain can
exhibit a variety of behaviors, the EEG response can typically
be constructed from a small number of prototypical wave-
forms [1]. The transition from healthy activity to a seizure
is marked by a sudden dramatic change in the qualitative
nature of the EEG signal. A seizure may contain several further
changes before normal neurological activity is restored [23].

For example, the EEG recording of the seizure in Fig. 2(c)
can be divided into four segments based on the qualitative
nature of the waveform, labeled S1, S2, S3, and S4. The
healthy background activity, S1, is characterized by small fluc-
tuations about a steady state. The presence of spikes in S2
indicates the onset of a seizure, with irregular low-frequency
oscillations in S3, and quasi-sinusoidal oscillations in S4.

In [5], the authors introduce a “dictionary” relating prototyp-
ical waveforms to attractors of a nonlinear dynamical system.
Here, we introduce a similar dictionary to associate prototyp-
ical waveforms to features in the phase-plane of the linear
threshold model. This dictionary, along with the bifurcation
analysis in Section III, can be used to systematically determine
conditions on the connectivity matrix W so that the desired
waveform can be replicated and the desired transitions can be
obtained by varying the input to the excitatory and inhibitory
populations.

In Table II, we relate the characteristic waveforms to fea-
tures in the phase plane, and in Table III we use bifurcations
from Section III to show which transitions between these
waveforms each system is capable of exhibiting. These two
tables can be used to explain epileptic patterns through the
dynamical properties of linear-threshold pairs, to character-
ize possible seizures each pair can create, and to synthesize
a system that can recreate an EEG pattern associated with a
seizure event.

As we show next, with the correct values of parameters,
the linear threshold model can have solutions sharing qual-
itative characteristics with EEG waveforms during epileptic
seizures. In Fig. 3(a) we replicate the seizure in Fig. 2(b) hav-
ing the characteristic waveforms S1-S4. Fig. 3(b) shows the
input u1 + w1 as a function of time. To replicate the normal
background activity in S1, we initialize system (D) choosing
u1 so that (0, 0) is the unique (stable) fixed point. The system
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Fig. 2. EEG recordings showing prototypical epileptic waveforms.

Fig. 3. Recreating epileptic dynamics using the LTN in Case D.
Simulation of EEG recording (top) and input u1 + w1.

then fluctuates around the equilibrium and there will be min-
imal activity in both the excitatory and inhibitory populations
with sporadic firings caused by the system noise.

To obtain spikes in S2, we increase u1 so that it is near the
first NSF-BEB bifurcation. When w1 + u1 < 0, x00 is a stable
fixed point. However, when u1 + w1 > 0, the system has a
unique limit cycle and x00 is unstable. In this case, the state
x will initially oscillate until the noise restores the stability
of x00, at which point the state will be attracted toward the
origin. As u1 is increased, the stable limit cycle persists even
with noise. The state oscillates about x�� with small amplitude
as in S3. Increasing u1 further increases both components of
x�� (see (9d)) as well as the amplitude of the oscillations,
resulting in behavior similar to S4. We notice that, instead of
increasing u1, a similar behavior can be achieved by decreasing
u2 since it has a negative contribution on the value of x∗

��

in (9d). This is to be expected, since u2 is the input to the
inhibitory population. In fact, a higher input to a population
translates in a higher firing rate for the population itself. This,
in return, increases oscillations when increasing the input to
an excitatory population, or decreases oscillations in the case
of an inhibitory population.

An additional behavior typical of epileptic seizures is a slow
wave, consisting of a low-frequency high amplitude oscilla-
tion with intermittent spikes. Fig. 2 shows an EEG recording
of a seizure initially with high frequency oscillations in S5,
then with slow waves with intermittent spikes in S6. To recre-
ate slow waves in the linear threshold model, we initialize
system (D) with u1 near the second NSF-BEB bifurcation.
When w1 > 0, xss is a stable fixed point and system fluctuates
around (m1, m2). When w1 < 0, xss is unstable and the system
has a limit cycle, resulting in a high frequency spiking which

Fig. 4. Recreating slow waves using Case D. Simulation of EEG
recording (top) and input u1 + w1 as a function of time.

is halted once the stability of xss is restored. A simulation
showing this behavior is in Fig. 4(a), with the corresponding
input in Fig. 4(b).

V. CONCLUSION

We have shown how LTNs can be used to model a variety of
prototypical brain waves measured in both healthy and epilep-
tic brains. Focusing on a two-dimensional network, we provide
an exhaustive analysis of the equilibria and bifurcations occur-
ring as a function of the input to the system. We also provide
a map and numerical evidence to associate these bifurcations
to patterns of EEG signals observed before, during, and after
seizure events. Directions of future research include a formal
analysis of the results suggested in Section IV to relate the
behavior of this model with real life EEG data, the study of
higher-dimensional linear threshold models, and the design of
control algorithms to detect and regulate seizure behaviors.

APPENDIX A
PROOF OF THEOREM 1

We first show how the conditions in the statement are nec-
essary and sufficient for (2) to have a unique fixed point x∗
which, furthermore, is unstable. For x∗ to be the unique equi-
librium, the nullclines N1 and N2 must intersect exactly once.
This condition is satisfied when (i) the slope of the nullcline
N1 in the linear region is less than the ratio m1/m2, cf (5c);
(ii) the slope of the nullcline N1 is smaller than that of N2
in the same region, see (5b); (iii) and 0 < x1(m1) < m2,
see (5d). Using the equations defining the nullclines, we obtain
the coordinates of x∗ in (6). Finally, since x∗ needs to belong
to the linear region, we have 0 < x∗

1 < m1, which reduces
to (5e). Furthermore, the equilibrium is unstable since the
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Jacobian at this fixed point is A = −I + W and, by (5a)
and (5b), trace(A)2 − 4det(A) < 0. Thus, the eigenvalues of A
are conjugate roots with real part (−d−1)+(a−1)

2 > 0.
Next, let R = { x | x ∈ [0, m1] × [0, m2]\Bε(x∗) } for ε

small enough so that Bε(x∗) ⊂ ���. Note that R is compact
by definition, and that [0, m1] × [0, m2] is forward invariant
with respect to the dynamics (2). Furthermore, since x∗ is the
unique fixed point, is in the interior of the region ���, and both
eigenvalues of the Jacobian have a positive real component, we
deduce that R is forward invariant. By the Poincaré-Bendixon
Theorem [17, Ch. 7.3], since R is compact, forward invariant,
and contains no fixed points, the system has a stable limit
cycle in R, concluding the proof. �

APPENDIX B
PROOF OF THEOREM 2

Recall that u is a bifurcation candidate if and only if there
exist distinct σ1 and σ2 such that x∗

σ1
(u) = x∗

σ2
(u). Examining

only the x1 component in equations (9a)-(9e), we see that these
are affine in u1. Moreover, the affine functions (9a) and (9e) are
parallel and never intersect, so there is no bifurcation candidate
when σ1 = 00 and σ2 = ss. By a similar line of reasoning, we
conclude that there is no bifurcation candidate when σ1 = l0
and σ2 = ls. Hence there are only eight possible bifurcation
candidates.

Let �σ1 and �σ2 be neighboring regions. Note that we can
define h such that the dynamics (1), on �σ1 ∪ �σ2 , become

ẋ =
{

fσ1(x, u1), h(x, u1) ≤ 0,

fσ2(x, u1), h(x, u1) ≥ 0,
(10)

where h(x, u1) = 0 on �σ1 ∩�σ2 . Let uσ1,σ2 be the bifurcation
candidate, i.e., x∗

σ1
(uσ1,σ2) = x∗

σ2
(uσ1,σ2) = x∗. Then, a BEB

occurs if h(x∗, uσ1,σ2) = 0. Further, a P-BEB occurs if there
exists a neighborhood of uσ1,σ2 such that, for all u1 in such
neighborhood, the following inequality holds:

h(x∗
σ1

(u1), u1)h(x∗
σ2

(u1), u1) > 0.

A NSF-BEB occurs instead when the inequality is not satisfied
in any neighborhood of uσ1,σ2 .

We will now show explicitly how to compute the type of
bifurcation when σ1 = 00 and σ2 = �0. Let �1 = �00 and
�2 = ��0. Then, (10) becomes

ẋ1 =
{−x1, h(x, u1) < 0,

(a − 1)x1 − bx2 + u1, h(x, u1) > 0,

with h(x, u1) = ax1−bx2+u1. From (9) we have (x∗
00(u1))1 =

0 and (x∗
�0(u1))1 = 1/(1 − a)u1. Hence, h(x∗

00(u1), u1) = u1
and h(x∗

0�(u1), u1) = u1/(1 − a), which identifies a P-BEB
at u1 = 0 if and only if a < 1. This result is confirmed in
Table I: in Case A, i.e., for a < 1, the bifurcation candidate
involving regions �00 and ��0 is a P-BEB, while it is a NSF-
BEB in cases B, C, and D. An equivalent analysis involving
the remaining seven bifurcation candidates can be performed,
leading to the conditions of the theorem and the four scenarios
highlighted in Table I. In the interest of space, the explicit
computations are here omitted.

Finally, cases C and D exhibit equivalent conditions for
the boundary equilibrium bifurcations. However, when con-
dition (8c) is met, the equilibrium in ��� is unstable, and a

limit cycle arises since conditions in Theorem 1 are satisfied.
This gives rise to a discontinuity-induced Hopf bifurcation,
which differentiates case D from case C. �
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