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Data-Driven Meets Geometric Control: Zero
Dynamics, Subspace Stabilization, and

Malicious Attacks
Federico Celi , Graduate Student Member, IEEE , and Fabio Pasqualetti , Member, IEEE

Abstract—Studying structural properties of linear
dynamical systems through invariant subspaces is one of
the key contributions of the geometric approach to system
theory. In general, a model of the dynamics is required
in order to compute the invariant subspaces of interest.
In this letter we overcome this limitation by finding direct
data-driven formulas for some of the foundational tools
of the geometric approach. We use our results to (i) find
a feedback gain that confines the system state within a
subspace, (ii) compute the invariant zeros of the unknown
system, and (iii) design attacks that remain undetectable.

Index Terms—Linear feedback control systems, algebra,
big data applications, fault tolerant control.

I. INTRODUCTION

THE GEOMETRIC approach is a collection of notions
and algorithms for the analysis and control of dynamical

systems. Differently from the classic methods in the frequency
and state space domains [1], the geometric approach offers
an intuitive and coordinate-free analysis of the properties of
dynamical systems in terms of appropriately defined sub-
spaces, and synthesis algorithms based on subspace operations,
such as sum, intersection, and orthogonal complementation.
The geometric approach has been successfully used to solve a
variety of complex control and estimation problems; we refer
the interested reader to [2] for a detailed treatment of the main
geometric control notions and their applications.

Similarly to the frequency and state-space approaches to
control, the geometric approach assumes an accurate, in fact
exact, representation of the system dynamics. To overcome
this limitation and in response to an ever-increasing availabil-
ity of sensors, historical data, and machine learning algorithms,
the behavioral approach, and more generally a data-driven
approach, has seen a rapid increase in popularity. Here, system
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analysis and control synthesis do not require a model of the
dynamics and are instead obtained directly from experimental
data reflecting the system dynamics [3].

While analysis, control and estimation problems can often
be solved equivalently using different methods, the frequency,
state-space, geometric, and data-driven approaches all offer
complementary insights into the structure and properties of
the system dynamics, and together contribute to forming a
comprehensive theory of systems. In this letter we create
the first connections between the geometric and data-driven
approaches to system analysis and control. In particular, we
derive data-driven expressions of the fundamental sets used
in the geometric approach to solve a variety of control and
estimation problems, and show how these sets have an even
more insightful and straightforward interpretation when ana-
lyzed in the higher-dimensional data space as compared to
their geometric view in the lower-dimensional state space.

Related work: From the first definitions of controlled and
conditioned invariant subspaces, the geometric approach to
control has evolved over the last decades into a full the-
ory and a set of algorithms for linear [2] and nonlinear [4]
systems. Applications of the geometric approach include
the disturbance decoupling [5] and fault detection [6] prob-
lems, the characterization of stealthy attacks in cyber-physical
systems [7], and the secure state estimation problem [8].

The data-driven approach to system analysis and control
is receiving renewed and increased interest. While traditional
indirect data-driven methods use data to identify a model
of the system [9] and proceed to synthesize a controller in
a second step, direct data-driven methods bypass (at least
apparently [10]–[12]) the identification step and design con-
trol actions directly from data. In this framework, recent
results tackle various problems for linear systems, including
optimal [13], [14], robust [15] and distributed [16]–[19] con-
trol, as well as unknown-input estimation [20]. We refer the
reader to [21] for a recent survey on data-driven control.

Main contributions of this letter: First, for the linear, dis-
crete, time-invariant systems described by the triple (A, B, C),
we derive explicit, closed-form data-driven expressions of (i)
V∗, the largest (A, Im(B))-controlled invariant subspace con-
tained in Ker(C), (ii) S∗, the smallest (A, Ker(C))-conditioned
invariant subspace containing Im(B), (iii) the feedback gain
F such that (A + BF)V∗ ⊆ V∗, and (iv) the invariant zeros
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of (A, B, C). Since V∗ and S∗ are the basis of the geometric
approach developed in [2], our data-driven formulas constitute
the basis of a data-driven and model-free theory of geomet-
ric control. Second, our results show that the fundamental
invariant subspaces of the geometric approach, which are often
computed recursively when operating in the state space, have
a simple and direct interpretation in the higher-dimensional
data space, where they can be computed by solving appropri-
ately defined sets of linear equations. Third, we demonstrate
the utility of our formulas to design undetectable data-driven
attacks.

Paper organization: Section II contains our problem setup
and some preliminary notions. Section III contains our data-
driven formulas of the fundamental invariant subspaces of the
geometric approach. Finally, Sections IV and V contain our
illustrative examples and conclusion, respectively.

Notation: We follow the notation of [2]. The rank, null
space, transpose, and Moore-Penrose pseudoinverse of the real
matrix A ∈ R

n×m are denoted with rank(A), Ker(A), A�, and
A† respectively. We use {0} to denote the trivial subspace con-
taining only the origin. Given a matrix A and a subspace V
of appropriate dimensions, A−1V denotes the pre-image of V
by the, possibly singular, matrix A. V = Basis(V) denotes any
full-column rank matrix such that Im(V) = V . The Kronecker
product between matrices A and B is denoted by A ⊗ B [22].

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

We consider the discrete-time linear time-invariant system

x(t + 1) = Ax(t) + Bu(t) (1a)

y(t) = Cx(t) (1b)

where x ∈ R
n, u ∈ R

m and y ∈ R
p are the state, input and out-

put vectors, respectively, and (A, B, C) are constant matrices
of appropriate dimensions. For any horizon T ≥ 1, the state
and output trajectories of (1) can be written as

⎡
⎢⎢⎢⎢⎣

x(1)

x(2)

.

.

.

x(T)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
XT

=

⎡
⎢⎢⎢⎢⎣

A
A2

.

.

.

AT

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
OX

T

x(0) +

⎡
⎢⎢⎢⎢⎣

B · · · 0 0
AB · · · 0 0

. . .

AT−1B · · · AB B

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
FX

T

⎡
⎢⎢⎢⎢⎣

u(0)

u(1)

.

.

.

u(T − 1)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
UT

, (2)

and
⎡
⎢⎢⎢⎢⎣

y(0)

y(1)

.

.

.

y(T − 1)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
YT

=

⎡
⎢⎢⎢⎢⎣

C
CA
.
.
.

CAT−1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
OY

T

x(0) +

⎡
⎢⎢⎢⎢⎣

0 · · · 0 0
CB · · · 0 0

. . .

CAT−2B · · · CB 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
FY

T

UT . (3)

Throughout this letter, we assume that the system matrices
are not known and base our approach on a set of prerecorded
trajectories obtained by arbitrarily probing the system (1).

A. Data Collection

Data is collected from a set of N open-loop control exper-
iments with horizon T and consist of the state and output
trajectories obtained from (1) with initial condition xi

0 and

control sequence Ui
T , for i ∈ {1, . . . , N}. In particular, when

needed, the following data matrices will be used:1

X = [
X1

T · · · XN
T

] ∈ R
nT×N, (4a)

X0 = [
x1(0) . . . , xN(0)

] ∈ R
n×N, (4b)

XF = [
x1(T) . . . , xN(T)

] ∈ R
n×N, (4c)

Y = [
Y1

T · · · YN
T

] ∈ R
pT×N, (4d)

U = [
U1

T · · · UN
T

] ∈ R
mT×N . (4e)

From (2)-(3), we note the following relationships:
[

X
Y

]
=

[
OX

T FX
T

OY
T FY

T

][
X0
U

]
. (5)

We make the following assumption of persistently-exciting
experimental inputs, which is generically satisfied by choosing
the inputs and initial states independently and randomly.

Assumption 1: The experimental inputs and initial condi-
tions are persistently exciting, that is,

rank

[
X0
U

]
= n + mT. (6)

Let K0 = Basis(Ker(X0)) and KU = Basis(Ker(U)).
Assumption 1 ensures that X0KU and UK0 are full-row rank,
respectively. Assumption 1 is a standard assumption in data
driven studies [12], [15], and places a lower bound on the
number of experiments N ≥ n + mT .

Remark 1 (Alternative data-driven representations):
Different data formats can be used to obtain a non-parametric
data-driven representation of the system (1), including
our representation (4) as well as Hankel and Page matri-
ces [12], [15]. While Hankel and Page matrices are generated
from a single controlled trajectory, the matrices in (4) can
be obtained from a single controlled trajectory or from a
collection of shorter controlled trajectories. Different data
collections can be more convenient for the solution of
different problems, with, currently, Hankel and Page matrices
being used mostly for feedback control problems [15] and
multiple trajectories for robustness problems [13].

B. Controlled and Conditioned Invariant Subspaces

The notions of controlled and conditioned invariant sub-
spaces are the basis of the geometric approach for the analysis
and control of linear systems. We now recall their defini-
tion and basic properties. We refer the interested reader to
[2], [23], [24] for a detailed treatment of this subject.

Definition 1 ((A,B)-controlled invariant): Given a matrix
A ∈ R

n×n and a subspace B ⊆ R
n, a subspace V ⊆ R

n is an
(A,B)-controlled invariant subspace if

AV ⊆ V + B. (7)

When B = Im(B), the notion of controlled invariance
refers to the possibility of confining the state trajectory of
the system (1) within a subspace. Specifically, the subspace
V is an (A, Im(B))-controlled invariant subspace if, for every
initial state in V , there exists a control input such that the
state belongs to V at all times. Of particular interest is V∗,

1The matrices (4) are used for our derivations. However, our results depend
often only on a subset of these data matrices.
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the largest (A, Im(B))-controlled invariant subspace contained
in Ker(C). The subspace V∗ contains all trajectories of (1)
that generate an identically zero output. Hence, it holds that
V∗ = {0} if and only if the system (1) features no invariant
zeros, a notion that is at the basis of the analysis of stealthy
attacks and unknown-input observers [7], among others.

Definition 2 ((A, C)-conditioned invariant): Given a matrix
A ∈ R

n×n and a subspace C ⊆ R
n, a subspace S ⊆ R

n is an
(A, C)-conditioned invariant subspace if

A(S ∩ C) ⊆ S. (8)

When C = Ker(C), the notion of conditioned invariance
arises in the context of state estimation. Specifically, the sub-
space S is an (A, Ker(C))-conditioned invariant subspace if it
is possible to design an (asymptotic) observer that reconstructs
the state up to a canonical projection onto R

n \ S by pro-
cessing the initial condition, the input, and the measurements
of the system (1). Of particular interest is S∗, the smallest
(A, Ker(C))-conditioned invariant subspace containing Im(B).
In fact, the orthogonal complement of S∗ is the largest sub-
space that can be estimated with a dynamic observer in the
presence of an unknown input.

The subspaces V∗ and S∗ can be conveniently computed
using simple recursive algorithms [2]. Further, these subspaces
can be used to characterize important properties of the system
(1). For instance, the system (1) is right invertible if and only
if V∗ ∪S∗ = R

n, and left invertible if and only if the subspace
R∗ = V∗ ∩S∗ is the trivial subspace [2]. It should be noticed
that R∗ coincides with the largest subspace that can be reached
from the origin with trajectories that belong to V∗ at all times
(hence, generating an identically zero output).

The definition of the subspaces V∗, S∗ and R∗, as well as
the algorithms to compute them, assume the exact knowledge
of the system matrices. Instead, in the remainder of this letter
we derive purely data-driven expressions of these subspaces,
which also offer an alternative interpretation of them. Similarly
to how V∗, S∗ and R∗ are used in the geometric approach,
our data-driven formulas can also be used to solve a variety
of estimation and control problems.

III. DATA-DRIVEN GEOMETRIC CONTROL

We begin with finding a data-driven expression of the sub-
space V∗ for the system (1), the largest (A, Im(B))-controlled
invariant subspace contained in Ker(C).

Theorem 1 (Data driven formula for V∗): Let X0 and Y be
as in (4b) and (4d), respectively, with T ≥ n. Then,

V∗ = X0 Ker(Y). (9)

Notice that (9) requires only the knowledge of the ini-
tial state X0 and the output trajectory Y of N experiments
in (4). To prove Theorem 1, recall that V∗ is the set of ini-
tial states for which there exists a control input such that the
resulting state trajectory generates an identically zero output.
Since the system is linear, under our assumption of per-
sistently exciting experimental inputs, any system trajectory
can be expressed as an appropriate linear combination of the
experimental trajectories. We next formalize this intuition.

Lemma 1 (Data-driven trajectories of (1)): Let (4) be the
data generated by the system (1) with T ≥ n. Let X̄T and ȲT

be the state and output trajectories of (1) generated with some
initial condition and control input. Then,

[
X̄T

ȲT

]
=

[
XKU XK0
YKU YK0

][
α

β

]
, (10)

for some vectors α and β.
Proof: Let x̄0 and ŪT be the initial condition and input to

(1). Since the matrices X0KU and UK0 are full-row rank (see
Assumption 1), there exists α and β such that

x̄0 = X0KUα and ŪT = UK0β. (11)

From (2) we have

X̄T = OX
T x̄0 + FX

T ŪT = OX
T X0KUα + FX

T UK0β

= XKUα + XK0β,

where the last equality follows from (5). Similarly from (3),

ȲT = OY
T x̄0 + FY

T ŪT = OY
TX0KUα + FY

T UK0β

= YKUα + YK0β,

which concludes the proof.
Lemma 1 shows how any state and output trajectory of (1)

can be written as a linear combination of the available data.
In particular, state and output trajectories are obtained in (10)
as the sum of the free and forced responses, which are recon-
structed from data of arbitrary control experiments. In fact,
XKUα is the state trajectory of (1) with initial condition
X0KUα and zero input (free response), while XK0β is the
state trajectory of (1) with zero initial condition and input
UK0β (forced response). We remark that Assumption 1 of
persistently exciting inputs is necessary to obtain this result.

The following instrumental Lemma shows that it is suffi-
cient to consider trajectories of any finite length T ≥ n to
compute V∗, and is instrumental to the proof of Theorem 1.

Lemma 2 (Computing V∗ from trajectories of finite length):
For the system (1), any initial state x0, and any finite horizon
T ≥ n, the following statements are equivalent:

(i) x0 ∈ V∗;
(ii) there exists an input sequence u(0), . . . , u(T − 1) such

that y(t) = 0 for all t ∈ {0, . . . , T − 1}.
Proof:
(i) ⇒ (ii) Follows from the definition of V∗.
(ii) ⇒ (i) Notice that y(T − 1) = Cx(T − 1) = 0. Thus,

x(T − 1) ∈ Ker(C) = V0. Similarly, x(T − 2) satisfies

x(T − 1) = Ax(T − 2) + Bu(T − 2), and

y(T − 2) = Cx(T − 2) = 0.

This implies that

x(T − 2) ∈ A−1(x(T − 1) − Bu(T − 2))

⊆ A−1(V0 + Im(B)) ∩ Ker(C) = V1

Iterating this procedure yields

x(T − 1) ∈ V0 = Ker(C), and (12a)

x(T − i) ∈ Vi = A−1(Vi−1 + Im(B)) ∩ Ker(C). (12b)
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Since Vi converges to V∗ is at most n steps [2], we have that
x(T − τ) ∈ V∗ for all τ ≥ n, which concludes the proof.

We now prove Theorem 1 using Lemma 1 and 2.
Proof of Theorem 1: From Lemma 2 we seek all initial

conditions x0 for which the output can be maintained at zero
for T ≥ n steps. From (10), the vectors α and β that identify
state trajectories with identically zero output must satisfy

[
α

β

]
∈ Ker

[
YKU YK0

]
. (13)

The initial condition corresponding to such trajectories is
x0 = X0KUα (11). Thus, using (13), V∗ becomes V∗ =[
X0KU 0

]
Ker

[
YKU YK0

] = X0 Ker(Y). The last equal-
ity follows from some algebraic manipulations, that are here
omitted.

We next find a data-driven expression for S∗, the smallest
(A, Ker(C)) conditioned invariant containing Im(B).

Theorem 2 (Data driven formula for S∗): Let X0, XF and
Y be as in (4b), (4c) and (4d), respectively, with T ≥ n. Then,

S∗ = XFK0 Ker(YK0). (14)

To prove Theorem 2, we first show that, similarly to the case
of V∗, the subspace S∗ can be computed from a collection of
trajectories of finite length T ≥ n.

Lemma 3 (Computing S∗ from trajectories of finite length):
For the system (1) and any finite horizon T ≥ n, the following
statements are equivalent:

(i) x(T) ∈ S∗;
(ii) there exists an input sequence u(0), . . . , u(T − 1) such

that y(t) = 0 for all t ∈ {0, . . . , T − 1} and x(0) = 0.
Proof:
(i) ⇒ (ii) Follows from the definition of S∗. In fact, let

u(t) = 0, for t ∈ {0, . . . , T − 2} and u(T − 1) �= 0. Then
x(T) = Ax(T − 1) + Bu(T − 1) = Bu(t − 1) ∈ Im(B) ⊆ S∗.

(ii) ⇒ (i) Because x(1) = Bu(0) and y(1) = Cx(1) = 0, we
have x(1) ∈ Im(B) ∩ Ker(C) = S1 ∩ Ker(C). Similarly,

x(2) ∈ A(S1 ∩ Ker(C)) + Im(B) = S2,

and x(2) ∈ Ker(C) since y(2) = Cx(2) = 0. Recursively:

x(1) ∈ S1 = Im(B), and (15a)

x(i) ∈ Si = A(Si−1 ∩ Ker(C)) + Im(B). (15b)

Since Si converges to S∗ in at most n steps [2], we have that
x(τ ) ∈ S∗ for all τ ≥ n, which concludes the proof.

We are now ready to prove Theorem 2.
Proof of Theorem 2: From (10), when x(0) = 0, any

state trajectory of length T that generates an identically zero
output of length T can be parameterized with α = 0 and
β ∈ Ker(YK0). Using Lemma 3, the set S∗ can be equiva-
lently written as the final states reached by such trajectories,
that is, S∗ = XFK0 Ker(YK0), which concludes the proof.

Remark 2 (Obtaining R∗ from V∗ and S∗): The combined
knowledge of V∗ and S∗ allows us to find R∗ as [2]

R∗ = V∗ ∩ S∗. (16)

Remark 3 (Direct vs indirect invariant subspaces computa-
tion): A direct comparison between our formulas and classic

Fig. 1. This figure shows a comparison for computing V∗ with two dif-
ferent data driven approaches for minimal system [26, Example 6.6].
Outputs Y are collected with noise, i.e., Y = Ŷ + �Y , where Y is
the measured data and �Y is the noise matrix with i.i.d. entries, zero
mean, and variance σY . In blue (dashed) we show the result obtained
trough the MOESP algorithm (see [26]). In red (solid) we show the result
obtained trough the approach proposed in our paper (DDA). State trajec-
tories X are assumed to be known only by MOESP, while DDA requires
only X0. For every approach and for every value of σY we perform
a total of 100 Montecarlo simulations and plot the mean value of the
angle between the estimated and the model based V∗ (true subspace).
T = 50 for MOESP, and T = 3, N = 20 for DDA.

indirect data-driven approaches is not straightforward. First,
our formulas for V∗ and S∗ use data that is not sufficient to
estimate the system matrices (e.g., the inputs U and the state
trajectories X are not used in Theorems 1 and 2). Second, when
inputs and outputs are available, system identification only
provides the system matrices up to a similarity transformation.
Hence, the subspaces computed with the identified matrices
would not match the original subspaces since the similarity
transformation remains unknown without state information.
Third, system identification methods make assumptions (such
as controllability and observability) that are not required for

our approach. For example, let A =
[

0.5 0
0 1

]
, B =

[
1
0

]
,

C1 = [
3 − 5

]
, and C2 = [

3 4
]

where (A, B) is not con-
trollable. We notice that �1 = (A, B, C1) and �2 = (A, B, C2)

share the same input-output relationship, i.e., there exist input-
output trajectories which are compatible with both systems.
However, �1 and �2 do not share the same V∗, in fact

V∗
�1

=
[

1.00
0.60

]
, V∗

�2
=

[
1.00

−0.75

]
.

System identification using input-output data cannot distin-
guish between �1 and �2 and, as a consequence, fails
at estimating the correct invariant subspaces. Instead, our
data-driven formulas work also in this situation.

Although a formal discussion of how noise affects the iden-
tification of subspaces is beyond the scope of this letter, in
Fig. 1 we offer a qualitative comparison of how our approach
performs with respect to a traditional system identification fol-
lowed by a model based geometric approach. We observe that
the tools presented in this letter are robust to noise. We refer
to the image caption for the implementation details and to [25]
for the code to reproduce this result.

The state of a system can be confined within a subspace
V through a state-feedback controller if and only if V is a
controlled invariant subspace. We continue this section with
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the data-driven design of such state-feedback controller, that
is, the data-driven design of a matrix F such that

(A + BF)V ⊆ V . (17)

For a trajectory XT and input UT , let

X0,T = [
x(1) x(2) · · · x(T − 1)

]
, (18a)

X1,T = [
x(2) x(3) · · · x(T)

]
, and (18b)

U0,T = [
u(0) u(1) · · · u(T − 1)

]
. (18c)

Theorem 3 (Data-driven feedback for invariant subspace):
Let XT be the trajectory of (1) with input UT and some ini-
tial condition. Let V = Im(V) be an (A, Im(B))-controlled
invariant subspace, and let

F = U0,T(X†
0,T + Kγ ), (19)

with K = Ker(X0,T) and

γ = −((I − VV†)X1,TK)†(I − VV†)X1,TX†
0,TVV†. (20)

If [U�
0,T X�

0,T ]� is full-row rank,2 then (A + BF)V ⊆ V .
Proof: From [15, Theorem 2], for any state-feedback gain

F, the closed loop matrix can be written as

A + BF = X1,TG,

where the matrix G satisfies X0,TG = I and U0,TG = F.
Further, F renders the subspace V invariant if and only if
(A + BF)V = X1,TGV ⊆ V, or, equivalently,

(I − VV†)X1,TGV = 0,

where V = Basis(V) and (I − VV†) is a projector onto V⊥.
From X0,TG = I we obtain G = X†

0,T + Kγ , where γ is any
matrix verifying the equality

(I − VV†)X1,T(X†
0,T + Kγ )V = 0.

Solving for γ (a solution γ exists because V is an (A, B)-
controlled invariant subspace and [U�

0,T X�
0,T ]� is full-row

rank) and using U0,TG = F concludes the proof.
Theorem 3 details the computation of a feedback matrix

that renders a subspace invariant, from sufficiently informative
state and input trajectories. It should be noticed that Theorem 3
does not guarantee the internal, nor external, stability of the
subspace, which imposes additional constraints on γ . This is
left as a topic of future investigation.

To conclude this section we present a strategy to identify
the invariant zeros of (1) from data. We make the assumption
that (1) is such that R∗ is the trivial subspace. Systems with
R∗ �= {0} are intrinsically vulnerable to, e.g., undetectable
malicious attacks with unstable state trajectories. On the other
hand, when R∗ = {0}, the existence of unstable invisible tra-
jectories depends on the modulo of its invariant zeros. In fact,
the knowledge of the number and magnitude of the invariant
zeros when R∗ = {0} is essential when studying problems
such as noninteracting control [2] and attack detection [7],
motivating our interest in their identification.

Theorem 4 (Data-driven invariant zeros): Let X and V∗ be
as in (4a) and (9), respectively, with T ≥ n. Let V = Basis(V∗)

2This condition requires the trajectory to be sufficiently informative and is
related to the notion of persistency of excitation [15], [21], [27].

Fig. 2. An example of consensus network. On the left, agents are num-
bered from 1 through 14, where nodes {12, 13, 14} (in black) are the
leaders and nodes {4, 11} (square) are the network monitors. On the
right, the weighted adjacency matrix for the follower nodes {1, . . . , 11} is
shown, together with the input and output matrices (the numerical val-
ues of the entries of the matrices are color coded and belong to the set
{0, 0.2, 0.4, 0.6, 0.8}).

and assume that R∗ = {0}. Then, z ∈ C is an invariant zero
of (1) if and only if the matrix

[
XX†(I ⊗ V) −

(
[z z2 · · · zT ] ⊗ I

)�]
(21)

has a nontrivial kernel.
Proof: When V∗ �= {0} and R∗ = {0}, there exists a tra-

jectory x(t) = ztx(0), with x(t) ∈ V∗ for all t ≥ 0 and z an
invariant zero of (1) [2]. We write such trajectory as

XV
T = [(zI)� · · · (zTI)�]v = (

[z · · · zT ] ⊗ I
)�

v. (22)

With Assumption 1, any trajectory belongs to the image of
the data matrix X. Then, when the trajectory XV

T above exists,
there also exists a vector w̄ ∈ X†(I ⊗ V) such that Xw̄ = XV

T .
The condition on w̄ imposes that the trajectory is compatible
with (1) while evolving inside V∗. Both vectors v �= 0 and
w̄ = X†(I ⊗ V)w �= 0 exist if and only if

XX†(I ⊗ V)w =
(

[z z2 · · · zT ] ⊗ I
)�

v (23)

i.e., the kernel of [XX†(I ⊗ V) − ([z z2 · · · zT ] ⊗ I)�] is
non-empty, concluding the proof.

The invariant zeros of the system (1) can be equivalently
characterized using data collected as in (18).

Lemma 4 (Data-driven invariant zeros): Let V∗ be as in (9)
and assume that R∗ = {0}. Let T = [

T1 T2
]
, with T1 =

Basis(V∗), and T2 chosen such that T is nonsingular. Finally,
let G = X†

0,T + Kγ , with γ defined as in (20). Then, the
invariant zeros of (1) are the eigenvalues of A11, where

T−1(X1,TG)T =
[

A11 A12
0 A22

]
. (24)

Proof: This result derives from the facts that (i) the closed
loop system with the state feedback u = Fx satisfies

A + BF = X1,TG, (25)

(ii) the subspace V∗ is invariant for the closed-loop matrix
A + BF, and (iii) the invariant zeros of (1) are the eigenvalues
of the closed-loop matrix A + BF contained in V∗.

IV. MALICIOUS ATTACKS: AN ILLUSTRATIVE EXAMPLE

To illustrate a possible use of the theory we developed,
consider the leader-follower consensus network in Fig. 2.

The network is equipped with two monitoring nodes, specif-
ically, nodes 4 and 11. The state of the monitoring nodes is
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Fig. 3. In this figure we show an attack on the network of Fig. 2. The
systems initial condition is chosen randomly and the leaders impose
u = [−2 2 4]�. The attacker waits for the system to reach its equilibrium
and then, at time t = 10s, injects an attack AT as proposed in Sec IV.
We notice how the system state its perturbed from the equilibrium, while
the output of the system remains unaffected by the attack, rendering
the attack action effectively invisible at the output. We use the following
parameters: time horizon T = 49 > n, and number of experimental
trajectories N = n + mT = 158, with X0 and U satisfying Assumption 1.

used to detect any anomalous behavior of the network from its
nominal dynamics (see also [28]). We let an attacker take con-
trol of the leader nodes, and seek for an attack strategy that
remains undetectable from the monitoring nodes, and lever-
ages only historical data of the network dynamics. The attacker
strategy is designed as follows: (i) compute V∗ and S∗ using
Theorems 1 and 2, respectively, and find R∗ = V∗ ∩ S∗; (ii)
for R = Basis(R∗), and X, U and K0 defined as in (4a), (4e)
and Assumption 1, compute P1 �= 0 as

[
XK0 I ⊗ R

][P1
P2

]
= 0; (26)

and (iii) choose the attack input AT as AT ∈ Im(UK0P1).
Then, for any initial state x(0) and nominal control input UT ,
the output of (2)-(3) with input UT is indistinguishable from
the output with input UT + AT . As can be seen in Fig. 3
from time t = 10s, the attacker strategy perturbs the state
of the network but does not affect the monitoring nodes, thus
remaining undetectable. In fact, it can be shown that any input
AT ∈ Im(UK0P) moves the state trajectory within the con-
trolled invariant R∗ ⊆ Ker(C), thus affecting the state of the
system but not its output.

V. CONCLUSION

In this letter we show how experimental data can be
used to learn key invariant subspaces of a linear system.
In particular, we derive data-driven expressions for V∗, the
largest (A, Im(B))-controlled invariant contained in Ker(C),
and S∗, the smallest (A, Ker(C))-conditioned invariant con-
taining Im(B). Being able to identify these subspaces from
data suggests that much of the results and intuitions of the
geometric approach to control can be conveniently reworked
in a data-driven framework. To support this point, we lever-
age the identified invariant subspaces to design a data-driven
feedback controller to force the state inside a desired con-
trolled invariant subspace, and to compute the invariant zeros
of the system. Finally, as an example of the theoretical results,
we design a data-driven undetectable attack. Applications and
extensions of the proposed results are numerous, and are left
as the subject of future investigation.
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