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A B S T R A C T

This article provides an overview of certain direct data-driven control results, where control sequences are
computed from (noisy) data collected during offline control experiments without an explicit identification of
the system dynamics. For the case of noiseless datasets, we derive several closed-form data-driven expressions
that solve a variety of optimal control problems for linear systems with quadratic cost functions of the state and
input (including the linear quadratic regulator problem, the minimum energy control problem, and the linear
quadratic control problem with terminal constraints), discuss their advantages and drawbacks with respect to
alternative data-driven and model-based approaches, and showcase their effectiveness through a number of
numerical studies. Interestingly, these results provide an alternative and explicit way of solving classic control
problems that, for instance, does not require the solution of an implicit and recursive Riccati equation as in the
model-based setting. For the case of noisy datasets, we show how the closed-form expressions derived in the
noiseless setting can be modified to compensate for the bias induced by noise, and perform a sensitivity analysis
to reveal favorable asymptotic robustness properties of the derived data-driven controls. We conclude the paper
with some considerations and a discussion of outstanding questions and directions of future investigation.
. Introduction

Data-driven control refers to the design of algorithms for systems
ith unknown dynamics using data obtained from a set of control
xperiments. This approach does not require the modeling of the system
ynamics using first principles, which is instead needed by the tradi-
ional model-based methods and can be challenging for certain complex
ystems. The design of data-driven controls can be indirect, where the
ontrol sequence is computed using a model of the system dynamics
dentified from data (i.e., the identification plus control pipeline),
r direct, where the control sequence is computed in an end-to-end
ashion without explicitly estimating the system dynamics from data.

hile model-based and indirect data-driven control design have a long
nd widely accepted history, direct data-driven control has received
enewed attention, possibly motivated by the numerous successes of
achine learning and artificial intelligence techniques.

This article reviews some of the recent results for direct data-
ontrol of linear time-invariant systems. Our main premise is that,
specially for systems with linear time-invariant dynamics, system-
heoretic properties and control methods are well-understood and have
een developed over the years, ranging from tests and algorithms in the
requency domain Åström and Murray (2010) to methods using state–
pace (Kailath, 1980) and geometric computations (Basile & Marro,
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E-mail addresses: fceli001@ucr.edu (F. Celi), baggio@dei.unipd.it (G. Baggio), fabiopas@ucr.edu (F. Pasqualetti).

1991), among others. The analysis, design and synthesis of control
methods based on the system behaviors (Willems & Polderman, 1997) is
certainly possible and interesting, but perhaps most useful only if com-
plemented with an understanding of when a specific problem should be
solved within a specific domain (e.g., frequency, state space, behaviors)
and using a specific algorithm. This type of questions, which has been
present, for instance in the machine learning research to characterize
the tradeoffs between generative and discriminative models (Ng & Jor-
dan, 2001), has instead received only scarce attention in the context of
data-driven control. As we shall see later, while data-driven and model-
based methods are theoretically equivalent in the absence of noise
and assuming perfect computations, in practice, the methods can differ
considerably in the way they propagate uncertainties thus leading unex-
pectedly to different results. Furthermore, even within the data-driven
framework, different formalisms can lead to expressions with different
complexity, interpretability and performance, thus motivating careful
analysis and comparisons. We will focus on a specific (and, in our
opinion, simple and insightful) framework to solve Linear Quadratic
(LQ) control problems using data, and comment on the advantages and
disadvantages of the proposed solutions. We refer the interested reader
to Markovsky and Dörfler (2021) for a more comprehensive survey of
data-driven control methods and the behavioral framework.
367-5788/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).
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The rest of the paper is organized as follows. Section 2 introduces
the problem setting, our notation, and some preliminary results on rep-
resenting linear dynamical systems using data. In particular, Lemma 2.1
contains a reformulation of Willems’ Fundamental Lemma (Willems,
Rapisarda, Markovsky, & De Moor, 2005) that allows for the explicit
characterization of the free and forced responses of a linear system us-
ing data, and extends the state–space data-based representation in van
Waarde, De Persis, Camlibel and Tesi (2020). Section 3 contains explicit
data-driven formulas for the solution to a variety of LQ control prob-
lems. These results extend and generalize the ones obtained in Baggio,
Katewa, and Pasqualetti (2019) and Baggio, Bassett, and Pasqualetti
(2021) for the case of a single dataset, and the ones in Baggio and
Pasqualetti (2020) and van Waarde, De Persis et al. (2020). Lemma 3.3,
in particular, further extends the data-based representation of the
system dynamics in Lemma 2.1 to allow for the use of heterogeneous
datasets and for the representation of trajectories longer than the ones
available in the dataset. Section 4 contains our formulas for data-driven
LQ control with noisy datasets, and contains (i) closed-form expressions
that compensate for the effect of noise (when the noise statistics are
known) and are asymptotically consistent, and (ii) a sensitivity study
that shows that the effect of perturbations vanish asymptotically, when
their magnitude is bounded and they affect only a ‘‘sublinear’’ number
of datapoints. These results generalize our previous bounds in Baggio
et al. (2021) and Celi, Baggio, and Pasqualetti (2023b). The case of
closed-loop LQ control is treated in Section 5, where we follow the
ideas in Celi, Baggio, and Pasqualetti (2022) and show how the Linear
Quadratic Regulator (LQR) gains can be learned in a data-driven setting
without identifying the system dynamics nor solving iterative, implicit
Riccati equations (Theorem 5.1 contains our data-driven closed-form
expressions of the LQR gain). Finally, Section 6 concludes the paper.

Notation. We let R and N denote the set of real and integer numbers,
espectively. Given a matrix 𝐴 ∈ R𝑛×𝑚, we let Rank(𝐴), Basis(𝐴), Ker(𝐴),
𝖳, 𝜎min(𝐴), 𝜎max(𝐴) denote the rank, a basis of the column space, the
ernel, the transpose, and the smallest and largest singular values of 𝐴,
espectively. We let blk-diag(𝐴1,… , 𝐴𝑛) be the block diagonal matrix
ith blocks 𝐴𝑖 ∈ R𝑛𝑖×𝑚𝑖 . We denote the Moore–Penrose pseudoinverse
f matrix 𝐴 with 𝐴†. We indicate the 2-norm of a matrix or vector
ith ‖⋅‖2. We let 𝐴 ≻ 0 (𝐴 ⪰ 0) denote a positive definite (positive

emidefinite) matrix. We let vec(𝐴) be the vectorization of matrix 𝐴.
or a positive semidefinite matrix 𝑊 ∈ R𝑛×𝑛 and vector 𝑥 ∈ R𝑛, we
et ‖𝑥‖𝑊 =

√

𝑥𝖳𝑊 𝑥. 𝐼𝑛 and 0𝑛,𝑚 denote the 𝑛 × 𝑛 identity matrix and
𝑛 × 𝑚 zero matrix, respectively (subscripts will be omitted when clear
from the context). For a random vector 𝑥∶𝛺 → R𝑛, we let P[𝑥 ∈ 𝑆]
and E[𝑥] be the probability that 𝑥 takes on a value in a set 𝑆 ⊆ R𝑛 and
the expected value of 𝑥, respectively. We let a.s. denote almost surely,
and

a.s.
←←←←←←←←←←←←←←→ almost sure convergence.

2. Problem setting and preliminary notions

We study the problem of designing control inputs for linear time-
invariant systems to solve a variety of optimal control and robustness
problems. We do this without knowing the system dynamics and by,
instead, leveraging a set of pre-recorded input–output trajectories,
together with state trajectories when needed. In particular, we consider
systems with linear, discrete-time, time-invariant dynamics of the form

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),

𝑦(𝑡) = 𝐶𝑥(𝑡) +𝐷𝑢(𝑡),
(1)

where 𝑥 ∈ R𝑛, 𝑢 ∈ R𝑚 and 𝑦 ∈ R𝑝 are the state, input and output
vectors at time 𝑡 ∈ N, respectively, and the matrices 𝐴, 𝐵, 𝐶 and 𝐷
are unknown. We assume that inputs 𝑈 , states 𝑋, and outputs 𝑌 are
available from a set of 𝑁 ∈ N control experiments with finite horizon
𝑇 ∈ N:

[ 1 𝑁 ] 𝑚𝑇×𝑁
2

𝑈 = 𝐮𝑇 ⋯ 𝐮𝑇 ∈ R , (2a) o
𝑋0 =
[

𝑥1(0) ⋯ 𝑥𝑁 (0)
]

∈ R𝑛×𝑁 , (2b)

𝑋 =
[

𝐱1𝑇 ⋯ 𝐱𝑁𝑇
]

∈ R𝑛𝑇×𝑁 , (2c)

𝑌 =
[

𝐲1𝑇 ⋯ 𝐲𝑁𝑇
]

∈ R𝑝𝑇×𝑁 . (2d)

n (2), 𝐮𝑖𝑇 , 𝐱𝑖𝑇 , and 𝐲𝑖𝑇 are the vectors containing the inputs, states, and
utputs of the 𝑖th experiment:

𝑖
𝑇 = vec(𝑢𝑖(0),… , 𝑢𝑖(𝑇 − 1)), (𝑖th input trajectory)
𝐱𝑖𝑇 = vec(𝑥𝑖(1), 𝑥𝑖(2),… , 𝑥𝑖(𝑇 )), (𝑖th state trajectory)
𝐲𝑖𝑇 = vec(𝑦𝑖(0),… , 𝑦𝑖(𝑇 − 1)). (𝑖th output trajectory)

e remark that the full input-state-output dataset (2) is not always
eeded to solve the problems described in this tutorial paper; the
ubset of required data will be specified based on the problem at hand.
urther, when convenient, we will use of the following matrices, which
an be extracted from (2):

F =
[

𝑥1(𝑇 ) ⋯ 𝑥𝑁 (𝑇 )
]

∈ R𝑛×𝑁 , (3a)

𝑌F =
[

𝑦1(𝑇 − 1) ⋯ 𝑦𝑁 (𝑇 − 1)
]

∈ R𝑝×𝑁 . (3b)

For the noiseless system (1), knowledge of the system matrices 𝐴, 𝐵,
and 𝐷 is equivalent to the availability of a (sufficiently rich) dataset

2). In fact, any dataset (2) can be generated with the matrices 𝐴, 𝐵,
and 𝐷 using (1), and, in turn, such matrices can be reconstructed

niquely (under mild data rank conditions) using the dataset (2):1

+
m =

[

𝐴 𝐵
]

[

𝑋−
m

𝑈m

]

, and 𝑌m =
[

𝐶 𝐷
]

[

𝑋−
m

𝑈m

]

,

where

𝑈m =
[

𝑢1(0),… , 𝑢1(𝑇 − 1),… , 𝑢𝑁 (0),… , 𝑢𝑁 (𝑇 − 1)
]

,

𝑋m =
[

𝑥1(0),… , 𝑥1(𝑇 ),… , 𝑥𝑁 (0),… , 𝑥𝑁 (𝑇 )
]

,

𝑋−
m =

[

𝑥1(0),… , 𝑥1(𝑇 − 1),… , 𝑥𝑁 (0),… , 𝑥𝑁 (𝑇 − 1)
]

,

𝑋+
m =

[

𝑥1(1),… , 𝑥1(𝑇 ),… , 𝑥𝑁 (1),… , 𝑥𝑁 (𝑇 )
]

,

𝑌m =
[

𝑦1(0),… , 𝑦1(𝑇 ),… , 𝑦𝑁 (0),… , 𝑦𝑁 (𝑇 − 1)
]

.

Clearly, the system matrices can be computed uniquely whenever the

matrix
[

𝑋−
m

𝑈m

]

is full row rank. While this analysis seems to discourage

the pursuit of data-driven methods, since sufficiently-rich datasets are
effectively a model of the system dynamics, in this review we will
show that, instead, data-driven computations allow for alternative and
sometimes more insightful, direct, and computationally-favorable so-
lutions to classic control problems, thus contributing to the theory of
systems and enriching our control tools. We remark that a detailed
analysis of the tradeoffs between direct data-driven methods and classic
identification-based approaches in noisy settings is much more nuanced
(Krishnan & Pasqualetti, 2021), deserves a dedicated treatment, and
will not be addressed here. Rather, we will show how our direct solu-
tions obtained with noiseless data can be used to study, and modified
to counteract, the effect of noise and perturbations on the datasets.

A powerful result underlying most data-driven approaches is
Willems’ Fundamental Lemma (Willems et al., 2005), which, loosely
speaking, gives a sufficient conditions under which any 𝑇 -long trajec-
tory of the system (1) can be constructed as linear combinations of
those in an appropriately constructed input–output dataset (Markovsky
& Dörfler, 2021). We next state a reformulation of Willems’ Fundamen-
tal Lemma that uses the dataset (2) and that allows us to distinguish
between the trajectories of (1) obtained with and without a control
input. This result will be instrumental for our derivations.

1 Similar formulas are contained also in De Persis and Tesi (2020), among
thers.
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Lemma 2.1 (Data-based Free and Forced Representation
Celi & Pasqualetti, 2022). Let (2)–(3) be the data generated by the system
(1). Assume that

Rank
([

𝑋0
𝑈

])

= 𝑚𝑇 + 𝑛. (4)

Let 𝐾𝑈 = Basis(Ker(𝑈 )) and 𝐾0 = Basis(Ker(𝑋0)). Then, for any initial
state 𝑥0 and input 𝐮𝑇 , there exist vectors 𝛼 and 𝛽 such that 𝑥0 = 𝑋0𝐾𝑈𝛼
nd 𝐮𝑇 = 𝑈𝐾0𝛽. Moreover,
[

𝐱𝑇
𝐲𝑇

]

=
[

𝑋𝐾𝑈 𝑋𝐾0
𝑌 𝐾𝑈 𝑌 𝐾0

] [

𝛼
𝛽

]

(5)

re the state and output trajectories of length 𝑇 of (1) generated by 𝑥0
nd 𝐮𝑇 .

Lemma 2.1 states that any trajectory of the system (1) can be
ritten as a linear combination of a collection of previously-recorded

rajectories. Yet, Lemma 2.1 provides a more granular decomposition
f the trajectories of the system (1) given data, as it identifies the free
esponse of the system from the initial condition 𝑥0, namely 𝑋𝐾𝑈𝛼, and
he forced response of the system from the input 𝐮𝑇 , namely 𝑋𝐾0𝛽. In
ddition to being of general interest, these formulas allow the recorded
ata to be used to predict the system trajectories given the initial
ondition and input sequence, rather than just as a description of the
ystem dynamics, and to analyze certain system-theoretic properties in
purely data-driven manner without requiring the identification of the

ystem dynamics (see also Celi and Pasqualetti (2022)).

emma 2.2 (Data-driven Reachability and Observability). Let the data
atrices 𝑋0 and 𝑈 satisfy (4). Then

Rank(𝑂𝑌𝑇 ) = Rank(𝑌 𝐾𝑈 ), (6)

where 𝑂𝑌𝑇 =
[

𝐶𝖳 (𝐶𝐴)𝖳 ⋯ (𝐶𝐴𝑇−1)𝖳
]𝖳, is the 𝑇 -steps observability

matrix of (1). Similarly,

Rank(𝐶𝑇 ) = Rank(𝑋F𝐾0), (7)

where 𝐶𝑇 =
[

𝐴𝑇−1𝐵 ⋯ 𝐴𝐵 𝐵
]

is the 𝑇 -steps controllability matrix
of (1) and 𝑋F is as in (3).

Lemma 2.2 relates the rank of the 𝑇 -step observability matrix 𝑂𝑌𝑇
to the data-driven matrix 𝑌 𝐾𝑈 . Clearly, when 𝑇 ≥ 𝑛, the system (1) is
observable if and only if Rank(𝑌 𝐾𝑈 ) = 𝑛. Similar comments hold in (7)
for the reachability subspace of (1).

Remark 1 (Single vs. Multiple Data Trajectories). A single experimental
trajectory may be sufficient to obtain a data-driven representation of
the system dynamics. A single trajectory, in fact, is used in Willems’
Fundamental Lemma and in several reformulations of this result, e.g.,
Lopez and Müller (2022), Schmitz, Faulwasser, and Worthmann (2022),
Verhoek, Tóth, Haesaert, and Koch (2021), Willems et al. (2005) and
Yu et al. (2021). We remark that the use of multiple trajectories, as
we do in Lemma 2.1, carries some advantages. First, the formulas in
Lemma 2.1 remain valid if only a single, long, trajectory is available. In
fact, the case of a single, long trajectory organized as a Hankel matrix
is a special case of our formalism. To see this, using the notation in
van Waarde, De Persis et al. (2020), the data collected from a single
trajectory of length 𝜏 is organized as

1(𝑥) =
[

𝑥(0) 𝑥(1) ⋯ 𝑥(𝜏 − 𝑇 )
]

,

𝑇 (𝑢) =
⎡

⎢

⎢

⎣

𝑢(0) 𝑢(1) ⋯ 𝑢(𝜏 − 𝑇 )
⋮ ⋮ ⋮

𝑢(𝑇 − 1) 𝑢(𝑇 ) ⋯ 𝑢(𝜏 − 1)

⎤

⎥

⎥

⎦

.

Clearly, one can set 𝑋0 = 1(𝑥) and 𝐮𝑖𝑇 equal to the 𝑖th column of
𝑇 (𝑢) to equivalently express the data as in our framework. Thus,
considering multiple, short trajectories as in (2) effectively generalizes
3

and includes the case of a single, long trajectory, Second, the use of
multiple trajectories is convenient when the dynamics are unstable,
since the system needs to be simulated for a shorter time horizon
compared to the case of a single trajectory. More generally, using
multiple trajectories produces data matrices that are numerically better
conditioned and yield more reliable computations. Finally, the use of
multiple trajectories is convenient from a statistical perspective when
the collected data is corrupted by noise (Tu, Frostig, & Soltanolkotabi,
2022). □

Remark 2 (State vs. Output Measurements). We assume here that the
state of the system (1) can be directly measured. Notice, however, that
this is not a restrictive assumption since a state measurement can be
replaced with a finite window of inputs and outputs to solve appropri-
ate control problems. In fact, the dynamics of (1) can be equivalently
written using only inputs and outputs as done, e.g., in Al Makdah,
Krishnan, Katewa, and Pasqualetti (2022) for the data-driven LQG
control problem. □

3. Data-driven formulas for open-loop LQ control

We start by studying the LQ control problem

minimize𝑢, 𝑥, 𝑦

𝑇−1
∑

𝑡=0

(

‖𝑦(𝑡)‖2𝑄𝑡 + ‖𝑢(𝑡)‖2𝑅𝑡

)

subject to 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),

𝑦(𝑡) = 𝐶𝑥(𝑡) +𝐷𝑢(𝑡),

𝑥(0) = 𝑥0, 𝑦(𝑇 − 1) = 𝑦f ,

(8)

where 𝑄𝑡 ⪰ 0 and 𝑅𝑡 ≻ 0 are the (time-varying) output and input
weighting matrices, 𝑥0 is the initial state, and 𝑦f the desired value of
the output at time 𝑇 − 1. Throughout the paper, we assume that (1)
is output controllable in 𝑇 − 1 steps2 to guarantee feasibility of (8) for
any choice of 𝑥0 ∈ R𝑛 and 𝑦f ∈ R𝑝, and that the rank condition (4)
holds. Problem (8) generalizes the classic (open-loop) linear–quadratic
control framework by including the possibility of minimizing a linear
function of the state (as opposed to the whole state) in addition to the
control input. Let 𝐮𝑇 = vec(𝑢(0),… , 𝑢(𝑇 − 1)) be the vector of inputs,
and
𝑄 = blk-diag(𝑄0,… , 𝑄𝑇−1),

𝑅 = blk-diag(𝑅0,… , 𝑅𝑇−1).
(9)

Using the notation in Section 2, we now present a closed-form solution
to the LQ control problem (8) that relies only on the data collected in
(2). First, notice that the cost in (8) can be written in vector form as
𝑇−1
∑

𝑡=0

(

‖𝑦(𝑡)‖2𝑄𝑡 + ‖𝑢(𝑡)‖2𝑅𝑡

)

= 𝐲𝖳𝑇𝑄𝐲𝑇 + 𝐮𝖳𝑇𝑅𝐮𝑇 .

Second, from Lemma 2.1 we have 𝐲𝑇 = 𝑌 𝐾𝑈𝛼 + 𝑌 𝐾0𝛽 and 𝐮𝑇 = 𝑈𝐾0𝛽,
for some vectors 𝛼 and 𝛽. Then, by letting 𝐾 =

[

𝐾𝑈 𝐾0
]

, the input
and output trajectories can be equivalently written as

𝐲𝑇 = 𝑌 𝐾
[

𝛼
𝛽

]

and 𝐮𝑇 = 𝑈𝐾
[

𝛼
𝛽

]

,

respectively, and the cost in (8) becomes
[

𝛼
𝛽

]𝖳
(

(𝑌 𝐾)𝖳𝑄(𝑌 𝐾) + (𝑈𝐾)𝖳𝑅(𝑈𝐾)
)

[

𝛼
𝛽

]

.

Similarly, the equality constraints in (8) can be written as
[

𝑋0
𝑌𝐹

]

𝐾
[

𝛼
𝛽

]

=
[

𝑥0
𝑦f

]

.

2 System (1) is output controllable in 𝑇 steps if
[

𝐶𝐴𝑇−1𝐵 ⋯ 𝐶𝐴𝐵 𝐶𝐵 𝐷
]

has full row rank. We remark that
Lemma 2.2 can be adapted to verify whether a system is output controllable
directly from data, substituting 𝑋 with 𝑌 .
𝐹 𝐹
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The above reasoning allows us to reformulate the LQ control problem
(8) as the data-based problem

minimize𝛾 ‖𝐿𝛾‖22

subject to 𝑊 𝛾 = 𝑧,
(10)

where

=
[

𝛼
𝛽

]

, 𝐿 =
[

𝑄1∕2𝑌 𝐾
𝑅1∕2𝑈𝐾

]

, 𝑊 =
[

𝑋0
𝑌F

]

𝐾, 𝑧 =
[

𝑥0
𝑦f

]

,

hich admits the solution
⋆ = (𝐼 −𝐾𝑊 (𝐿𝐾𝑊 )†𝐿)𝑊 †𝑧,

ith 𝐾𝑊 = Basis(Ker(𝑊 )). This leads to the following data-driven
olution to Problem (8).

heorem 3.1 (Data-driven LQ Control). The input 𝐮∗𝑇 that solves the LQ
ontrol problem (8) is

∗
𝑇 = 𝑈𝐾 (𝐼 −𝐾𝑊 (𝐿𝐾𝑊 )†𝐿)𝑊 †

[

𝑥0
𝑦f

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛾∗

. (11)

With the additional assumption that Rank(𝑄1∕2𝑂𝑌𝑇 ) = 𝑛,3 an alterna-
ive expression for 𝐮∗𝑇 that does not require the computation of kernel
atrices is extracted from

[

𝑥0
𝐮∗𝑇

]

= 𝑃− 1
2

(

[

𝑋0
𝑌F

] [

𝑋0
𝑈

]†

𝑃− 1
2

)†
[

𝑥0
𝑦f

]

, (12)

where

𝑃 =

(

𝑌
[

𝑋0
𝑈

]†)𝖳

𝑄

(

𝑌
[

𝑋0
𝑈

]†)

+
[

0 0
0 𝑅

]

. (13)

A proof of (12) is postponed to the Appendix. We remark that (11) and
(12) rely on assumption (4). In practice, this imposes a lower bound
on the number 𝑁 of trajectories recorded in (2), i.e., 𝑁 ≥ 𝑚𝑇 + 𝑛. In
fact, when this condition is not satisfied, then the Problem (10) may be
infeasible or not return the desired optimal control for some choices of
the initial condition 𝑥0 and target output 𝑦f.

Remark 3 (Closed-form Solutions vs. Iterative and Optimization-Based
Solutions). The distinctive aspect of the above results lies in the uti-
lization of a closed-form formula, as shown in Theorem 3.1 and in
most of the results discussed in this review. While exceptions do
exist, such as those in Pellegrino, Blanchini, Fenu, and Salvato (2023a,
2023b) and da Silva, Bazanella, Lorenzini, and Campestrini (2018), it
is noteworthy that much of the existing literature on data-driven con-
trol predominantly revolves around iterative and optimization-based
methodologies. It is essential to acknowledge that certain problems
necessitate optimization-based approaches, often those involving non-
linear systems or input–output constraints. Nevertheless, when the
opportunity for closed-form solutions arises, closed-form expressions
provide not only valuable insights into problem solutions but also con-
fer numerical advantages over alternative methods, see e.g., Celi et al.
(2022) for a discussion on the computational advantages of closed-form
formulas over optimization-based solutions. Further, closed-form for-
mulas have been recently used in the context of data-driven control to
solve a set of diverse problems, such as the computation of the Kalman
Filter and of the Linear Quadratic Gaussian regulator (Al Makdah
& Pasqualetti, 2023), the identification of geometric invariant sub-
spaces (Celi & Pasqualetti, 2022), and the solution of the eigenstructure
assignment problem (Celi, Baggio, & Pasqualetti, 2023a).

3 This is a mild condition that is satisfied, for instance, when (1) is
bservable and 𝑄 ≻ 0.
4

𝐮

Fig. 1. This figure shows the output trajectory of the system in Example 1
with 𝐮𝑇 computed through (11). Data is collected as described in (2), with 𝑋0
and 𝑈 random matrices with i.i.d. entries. The experiment is run with 𝑄𝑡 =
blk-diag(10, 10, 10, 100, 100, 100), 𝑅𝑡 = 𝐼𝑚, for all 𝑡 = {1,… , 𝑇 }, and 𝑇 = 150. Panel (a)
shows the trajectories of the position (solid lines) and the orientation angles (dashed
lines). Panel (b) shows the trajectory of the position in 3-D space (circle: initial position,
cross: final position).

Example 1. We now apply the result from Theorem 3.1 to control a
simplified model of a quadcopter. The quadcopter is dimensioned after
a Crazyflie drone, with data (2) collected using Matlab simulations. For
more details on the model of the system, we refer the reader to Wang,
Man, Cao, Zheng, and Zhao (2016). The state of the system is

𝑥 =
[

𝑥 𝑥̇ 𝜃 𝜃̇ 𝑦 𝑦̇ 𝜙 𝜙̇ 𝑧 𝑧̇ 𝜓 𝜓̇
]𝖳,

where (𝑥, 𝑦, 𝑧) and (𝑥̇, 𝑦̇, 𝑧̇) are the coordinates and linear velocities,
respectively, and (𝜃, 𝜙, 𝜓) and (𝜃̇, 𝜙̇, 𝜓̇) are the roll, pitch and yaw angles
and their respective velocities. The measured outputs are limited to
the coordinates (𝑥, 𝑦, 𝑧) and the asset angles (𝜃, 𝜙, 𝜓). The system is
simulated in Fig. 1, where 𝐮𝑇 is obtained from (11). □

3.1. Minimum energy control

The minimum-energy control problem (ME) is obtained from (8)
by letting 𝑄𝑡 = 0 and 𝑅𝑡 = 𝐼 . It reads as (Kailath, 1980; Pasqualetti,
Zampieri, & Bullo, 2014)

min
𝑢

𝑇−1
∑

𝑡=0
‖𝑢(𝑡)‖22

s.t. 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),

𝑦(𝑡) = 𝐶𝑥(𝑡) +𝐷𝑢(𝑡),

𝑥(0) = 𝑥0, 𝑦(𝑇 − 1) = 𝑦f .

(14)

learly, a solution to this problem can be obtained from Theorem 3.1 by
imply letting 𝐿 = 𝑈𝐾. An insightful instance of the minimum energy
ontrol problem (14) is when 𝑥0 = 0 and 𝑋0 = 0, that is, the initial
onditions of the experimental data and of the control problem are all
qual to zero. In this case, although Lemma 2.1 cannot be used for a
ata-based representation of the system trajectories since 𝑋0 is not full-
ow rank, a direct expression for the minimum energy input can readily
e obtained.

heorem 3.2 (Data-driven ME Control Baggio et al., 2019). Let 𝑋0 = 0
nd Rank(𝑈 ) = 𝑚𝑇 . Then, the input 𝐮∗𝑇 that solves the minimum energy
ontrol problem (14) is
∗
𝑇 = 𝑈 (𝐼 −𝐾𝑌F (𝑈𝐾𝑌F )

†𝑈 )𝑌 †
F 𝑦f , (15)

here 𝑌F are the final states of the recorded trajectories (3) and 𝐾𝑌F =
asis(Ker(𝑌F)).

Eq. (15) is obtained from (11) leveraging the simplifications due
o 𝑋0 = 0. Along the lines of the derivation of (12), the following
lternative minimum-energy control expression holds:
∗ = (𝑌 𝑈†)†𝑦 . (16)
𝑇 F f
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Fig. 2. Panels (a)–(b) show the norm of the minimum energy control computed through: (i) the model-based formula 𝐮𝑇 = 𝐶†
𝑇 (𝑥f − 𝐴

𝑇 𝑥0), where 𝐶𝑇 is the controllability matrix
efined in Lemma 2.2, (ii) the controllability Gramian with 𝑢(𝑡) = 𝐵𝖳(𝐴𝖳)𝑇−𝑡−1𝑊 †

𝑇 (𝑥f − 𝐴𝑇 𝑥0), (iii) the exact data-driven expression (16), and (iv) the asymptotically correct
xpression (19). The underlying system is generated randomly, with 𝑛 = 20, 𝑚 = 2, 𝑇 = 40, 𝑥f = [1 1 … 1]𝖳 and 𝑁 is specified on the 𝑥-axis. The curves represent the average over
00 experiments with input data generated as random i.i.d. normal entries. Notice that, in accordance with the conditions imposed by Lemma 2.1, the expression (15) becomes
xact once 𝑁 = 𝑛 + 𝑚𝑇 = 80 linearly independent experimental trajectories have been collected. Further, notice that (19) returns a feasible (the control satisfies the constraint)
et suboptimal (the cost achieved by the control is not optimal) solution for finite values of 𝑁 . Panels (c)–(d) show the norm of the inputs 𝐮𝑇 computed as above, and the
orresponding errors in the final state, as a function of the system dimension 𝑛. We note that while the Gramian-based solution is technically exact, it is effectively less robust
han the exact data-driven formulas in (16) and (19) for systems with a large number of states. This loss of numerical precision is a consequence of the computational process
nvolved in computing and manipulating the controllability Gramian. We let 𝑚 = 2, 𝑇 = 𝑛, 𝑁 = 𝑚𝑇 + 20, and 𝑥f = [1 1 … 1]𝖳. The matrices 𝐴 and 𝐵 are generated randomly. The
urves represent the average over 100 experiments with data generated as above.
hen 𝐶 = 𝐼 and 𝐷 = 0 this formula offers a data-driven way to
ompute the 𝑇 -step Gramian and its eigenvalues. In fact, it can be
een that in this case Eq. (16) can be written as a function of 𝑋F and4

he controllability matrix in (7) equals 𝐶𝑇 = 𝑋F𝑈†. Consequently, the
ramian satisfies

𝑇 = 𝐶𝑇𝐶
𝖳
𝑇 = 𝑋F𝑈

†𝑈†𝖳𝑋𝖳
F . (17)

imilarly, since the smallest (resp. largest) eigenvalues of the Gramian
dentify the states that require largest (resp. smallest) input energy,
hese can also be computed as

𝜎−1min(𝑊𝑇 ) = max
‖𝑥f ‖2=1

‖(𝑋F𝑈
†)†𝑥f‖22 = 𝜎2max((𝑋F𝑈

†)†),

−1
max(𝑊𝑇 ) = min

‖𝑥f ‖2=1
‖(𝑋F𝑈

†)†𝑥f‖22 = 𝜎2min((𝑋F𝑈
†)†).

(18)

Finally, when the entries of 𝑈 are i.i.d. random variables with
ero mean and nonzero finite variance, one can obtained simplified
xpressions of the minimum energy control input. For instance, the
implified expression

̂ 𝑇 = 𝑈𝑋†
F𝑥f (19)

onverges to the minimum-energy input 𝐮∗𝑇 almost surely, as the num-
er of trajectories 𝑁 increases (Baggio et al., 2019). Since the minimum
nergy input is unique and for any finite value of 𝑁 it generally
olds 𝐮̂𝑇 ≠ 𝐮∗𝑇 , it follows that (19) is a suboptimal input for the

minimum energy problem (14). In particular, the input (19) drives
the system to the desired final state 𝑥f with non-minimum energy,
while requiring fewer numerical operations for its computation when
compared with (15), (16). This property can be useful when dealing
with large (network) systems, for which these calculations are gen-
erally ill-conditioned (Baggio et al., 2021, 2019; Pasqualetti et al.,
2014). In support of these claims, in Fig. 2 we perform a series of
numerical experiments, where we assess the numerical robustness and
accuracy of direct data-driven controls. We notice that the accuracy
in computing the minimum-energy control input using the data-driven
expression (16) is comparable to that achieved when using the model-
based counterpart, yet numerically more accurate than the model-based
Gramian formula. Further, in Fig. 2(c)–(d) we notice that the accuracy
of the Gramian-based control input decreases as 𝑛 increases, while the
data-driven expressions of the minimum-energy control inputs remain
accurate for systems of considerably larger dimension.

4 In this case the terminal constraint for (14) becomes 𝑥(𝑇 ) = 𝑥 .
5

f

As we progress through this paper, the closed-form expressions
outlined in this section will form the foundational building blocks
for deriving novel closed-form solutions to a variety of problems.
Among these, in the following sections we will cover the infinite-
horizon linear quadratic regulator problem (Celi et al., 2022), the linear
quadratic Gaussian control problem (Al Makdah & Pasqualetti, 2023),
the distributed data-driven linear quadratic control problem (Celi et al.,
2023b). Further, we will answer several robustness questions related to
data-driven control (Anguluri, Al Makdah, Katewa, & Pasqualetti, 2020;
Celi et al., 2023b).

3.2. Datasets with heterogeneous control horizons

The results presented thus far assume that the experimental tra-
jectories have the same length. In practice, however, it may be more
convenient to collect data from heterogeneous experiments with differ-
ent control horizons. The first question that we answer is whether the
trajectories of the system can be represented as a linear combination
of trajectories of different lengths, and for which control horizon. Is
it possible to represent trajectories of length greater than those of the
control experiments? Ultimately, this analysis leads to an extension of
Lemma 2.1.

To formalize the discussion, assume that the control experiments are
performed using 𝑀 distinct horizons 𝑇𝑖 ∈ N, 𝑖 ∈ {1,… ,𝑀}, and that the
available data is organized as

(

𝑈𝑖, 𝑋0,𝑖, 𝑋𝑖, 𝑌𝑖
)

, 𝑖 ∈ {1,… ,𝑀}, where
the 𝑖th set contains 𝑁𝑖 experiments, and 𝑋0,𝑖 ∈ R𝑛×𝑁𝑖 , 𝑈𝑖 ∈ R𝑚𝑇𝑖×𝑁𝑖 ,
𝑋𝑖 ∈ R𝑛𝑇𝑖×𝑁𝑖 , and 𝑌𝑖 ∈ R𝑝𝑇𝑖×𝑁𝑖 denote the matrices containing the initial
states of the experiments, and the input, state, and output sequences
with horizon 𝑇𝑖. Finally, let 𝑋F,𝑖 contain the last 𝑛 rows of 𝑋𝑖 and
𝐻 =

{(

𝑈𝑖, 𝑋0,𝑖, 𝑋𝑖, 𝑌𝑖
)}𝑀

𝑖=1 be the set of heterogeneous data. See Fig. 3
for an illustration of the heterogeneous dataset.

We now present an extension of Lemma 2.1 that allows us to
represent trajectories of (1) of length 𝑇 using the heterogeneous data
𝐻 , where the horizon 𝑇 is an integer-weighted combination of the
experimental horizons 𝑇𝑖 (e.g., if 𝑇1 = 2, 𝑇2 = 3, and 𝑇3 = 8, we could
take 𝑇 = 𝑇2 + 2𝑇3 = 19). The main ideas behind this result are that
a trajectory of length 𝑇 can be broken up in multiple sub-trajectories,
where the initial state of each sub-trajectory equals the final state of the
previous sub-trajectory, and each sub-trajectory admits a data-based
representation as in Lemma 2.1 (see also Fig. 4). We remark that the
decomposition of a trajectory into multiple parts of a certain length
may not be unique, thus leading to potentially multiple data-driven
representations of the same trajectory when using heterogeneous data
(for instance, if 𝑇1 = 2, 𝑇2 = 3, and 𝑇3 = 8, then we could take

𝑇 = 19 = 8𝑇1 + 𝑇3 = 𝑇2 + 2𝑇3 = 𝑇3 + 𝑇2 + 𝑇3).
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Fig. 3. This figure shows the data collection phase with heterogeneous datasets.

Fig. 4. This figure shows an example of decomposition of a input-state trajectory in
sub-trajectories: a trajectory of length 𝑇 = 10 is divided in three sub-trajectories of
lengths 𝑇1 = 4, 𝑇2 = 2, 𝑇3 = 4.

emma 3.3 (Data-based Free and Forced Response Representation with
eterogeneous Data). Let 𝐻 be the set of heterogeneous data and assume

hat

Rank
([

𝑋0,𝑖
𝑈𝑖

])

= 𝑚𝑇𝑖 + 𝑛. (20)

et 𝓁1,… ,𝓁𝑝 be a sequence of indices such that 𝑇 =
∑𝑝
𝑖=1 𝑇𝓁𝑖 . Further, let

0,𝑖 = Basis(Ker(𝑋0,𝑖)), 𝐾𝑈,𝑖 = Basis(Ker(𝑈𝑖)),

𝑉𝑖 =(𝑋0,𝓁𝑖+1𝐾𝑈,𝓁𝑖+1 )
†𝑋𝐹 ,𝓁𝑖𝐾𝑈,𝓁𝑖

𝑖 =(𝑋0,𝓁𝑖+1𝐾𝑈,𝓁𝑖+1 )
†𝑋𝐹 ,𝓁𝑖𝐾0,𝓁𝑖 .

hen, for any initial state 𝑥0 and input 𝑢𝑇 , there exist vectors 𝛼 and 𝛽 such
hat

𝑥0 = 𝑋0,𝓁1𝐾𝑈,𝓁1𝛼, and
𝑢𝑇 = blk-diag(𝑈𝓁1

𝐾0,𝓁1 ,… , 𝑈𝓁𝑝
𝐾0,𝓁𝑝 )𝛽.

oreover, 𝐱𝑇 and 𝐲𝑇 in (21) (see Box I) are the state and output trajectories
f length 𝑇 of (1) generated by 𝑥0 and 𝑢𝑇 .

A proof of Lemma 3.3 can be found in Appendix. Intuitively, the
6

ata-based representation of the 𝑇 -steps state and output trajectories
f Lemma 3.3 is obtained by suitably ‘‘gluing’’ together the data-
ased representations of system trajectories of lengths {𝑇1,… , 𝑇𝑀}.
ote in particular that the horizon 𝑇 can be longer than the horizons
f the experimental trajectories, thus allowing for the representation of
rajectories that have never been observed during the experiments. As a
pecial case, when the experimental trajectories have the same horizon,
hat is 𝑀 = 1, it is possible to reconstruct from data system trajectories
ith horizons equal to any multiple integer of 𝑇1. This is illustrated in

he next example.

xample 2 (Data-based Representation of Trajectories Longer Than the
xperimental Data as in Lemma 3.3). Consider the scalar system

(𝑡 + 1) = 𝑎𝑥(𝑡) + 𝑢(𝑡), 𝑎 ∈ R,

nd the dataset with horizon 𝑇 = 2

1 =
[

0 1 0
0 0 1

]

, 𝑋0,1 =
[

1 0 0
]

, 𝑋1 =
[

𝑎 1 0
𝑎2 𝑎 1

]

.

It holds

𝐾𝑈,1 =
⎡

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎦

, 𝐾0,1 =
⎡

⎢

⎢

⎣

0 0
1 0
0 1

⎤

⎥

⎥

⎦

, 𝑉1 = 𝑎2, 𝑍1 =
[

𝑎 1
]

.

From Lemma 3.3, for any 𝑥0 and 𝐮4, there exist 𝛼 and 𝛽 such that

𝑥0 = 𝑋0,1𝐾𝑈,1𝛼 = 𝛼, and
𝐮4 = blk-diag(𝑈1𝐾0,1, 𝑈1𝐾0,1)𝛽 = 𝛽,

and the state trajectory with initial condition 𝑥0 and input sequence 𝐮4
in the interval [1, 4] is given by

𝐱4 =
[

𝑋1𝐾𝑈,1 𝑋1𝐾0,1 0
𝑋1𝐾𝑈,1𝑉1 𝑋1𝐾𝑈,1𝑍1 𝑋1𝐾0,1

] [

𝛼
𝛽

]

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑎 1 0 0 0
𝑎2 𝑎 1 0 0
𝑎3 𝑎2 𝑎 1 0
𝑎4 𝑎3 𝑎2 𝑎 1

⎤

⎥

⎥

⎥

⎥

⎦

[

𝛼
𝛽

]

. □

In addition to providing a new data-based representation of the
trajectories of (1) that allows for multiple heterogeneous experiments,
Lemma 3.3 can also be used to derive data-driven formulas that solve
LQ control problems, among others. For instance, under the assumption
of Lemma 3.3, the data-driven LQ control expression in (3.1) remains
valid when the dataset 𝐻 is used by redefining 𝐿 and 𝑊 as follows:

𝐿 =

[

𝑄1∕2𝑌𝓁1∶𝑝
𝑅1∕2𝑈𝓁1∶𝑝

]

, 𝑊 =

[

𝑋0,𝓁1𝐾𝑈,𝓁1
𝑌𝓁1∶𝑝 ,F

]

,

where 𝑈𝓁1∶𝑝
= blk-diag(𝑈𝓁1

𝐾0,𝓁1 ,… , 𝑈𝓁𝑀
𝐾0,𝓁𝑝 ), and 𝑌𝓁1∶𝑝 and 𝑌𝓁1∶𝑝 ,F

denote the matrices consisting of the last 𝑝𝑇 and 𝑝 rows, respectively,
of the matrix in (21).

Remark 4 (Alternative Approaches to Using Heterogeneous Datasets). Al-
ternative data-based representations of system trajectories with hetero-
geneous datasets have been proposed in Baggio and Pasqualetti (2020)
and van Waarde, De Persis et al. (2020). In Baggio and Pasqualetti
(2020), the experimental data consist of inputs, initial and final state
recordings with different time horizons 𝑇𝑖. The resulting data-based
representation of state trajectories is given in sampled form and exploits
a data-based reconstruction of 𝐴𝑇𝑖 . In van Waarde, De Persis et al.
(2020) a generalization of Willems’ Fundamental Lemma to the case
of multiple trajectories is presented. Differently from our approach,
this generalization does not seem to allow for the computation of
trajectories longer than the experiments. □
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[

[

[

𝐱𝑇
𝐲𝑇

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑋𝓁1
𝐾𝑈,𝓁1 𝑋𝓁1

𝐾0,𝓁1 0 ⋯ ⋯ 0
𝑋𝓁2

𝐾𝑈,𝓁2𝑉1 𝑋𝓁2
𝐾𝑈,𝓁2𝑍1 𝑋𝓁2

𝐾0,𝓁2 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑋𝓁𝑝
𝐾𝑈,𝓁𝑝𝑉𝑝−1 ⋯𝑉1 𝑋𝓁𝑝

𝐾𝑈,𝓁𝑝𝑍𝑝−1 ⋯𝑍1 𝑋𝓁𝑝
𝐾𝑈,𝓁𝑝𝑍𝑀−2 ⋯𝑍1 ⋯ 𝑋𝓁𝑝

𝐾0,𝓁𝑝𝑍1 𝑋𝓁𝑝
𝐾0,𝓁𝑝

𝑌𝓁1𝐾𝑈,𝓁1 𝑌𝓁1𝐾0,𝓁1 0 ⋯ ⋯ 0
𝑌𝓁2𝐾𝑈,𝓁2𝑉1 𝑌𝓁2𝐾𝑈,𝓁2𝑍1 𝑌𝓁2𝐾0,𝓁2 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑌𝓁𝑝𝐾𝑈,𝓁𝑝𝑉𝑀−1 ⋯𝑉1 𝑌𝓁𝑝𝐾𝑈,𝓁𝑝𝑍𝑀−1 ⋯𝑍1 𝑌𝓁𝑝𝐾𝑈,𝓁𝑝𝑍𝑀−2 ⋯𝑍1 ⋯ 𝑌𝓁𝑝𝐾0,𝓁𝑝𝑍1 𝑌𝓁𝑝𝐾0,𝓁𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

𝛼
𝛽

]

(21)

Box I.
o
s
𝑚

. Robustness of data-driven open-loop LQ control

One of the main advantages of the direct data-driven approach with
xplicit formulas presented thus far is the possibility to analytically
xplore the impact of perturbations on these formulas and easily com-
ute their sensitivity to parameter variations. In fact, such an analysis
ields a way to quantify and improve the robustness of the direct data-
riven approach to noisy and corrupted datasets. We consider two
ases, which differ in the available knowledge of the statistics of the
erturbations affecting the data. Let the perturbed dataset be

𝑈̃ = 𝑈 + 𝛥𝑈 , (22a)
̃0 = 𝑋0 + 𝛥0, (22b)

𝑋̃ = 𝑋 + 𝛥𝑋 , (22c)

𝑌 = 𝑌 + 𝛥𝑌 , (22d)

here 𝑈 , 𝑋0, 𝑋, 𝑌 denote the ground truth values as in (2) and 𝛥𝑈 ,
0, 𝛥𝑋 , 𝛥𝑌 contain stochastic perturbations. For the purpose of this
iscussion, we focus on the data-driven control in (12). However, the
nalysis can be adapted to other data-driven control expressions.

.1. Data-driven LQ control with known noise statistics

We start with the standard scenario of i.i.d. perturbations charac-
erized by known second-order statistics. In particular, we assume that
𝑈 , 𝛥0, 𝛥𝑌 are random matrices consisting of i.i.d. entries with zero
ean and variance 𝜎2𝑈 , 𝜎20 , and 𝜎2𝑌 , respectively. In this setting, the
ata-driven control (12) is not consistent; that is, it does not converge to
he true optimal control input even when the amount of available data
rows to infinity. This lack of consistency is due to the pseudoinverse
peration
[

𝑋̃0
𝑈̃

]†

=
[

𝑋̃0
𝑈̃

]𝖳
(

[

𝑋̃0
𝑈̃

] [

𝑋̃0
𝑈̃

]𝖳
)†

,

hich contains quadratic terms (namely, 𝑋̃0𝑋̃𝖳
0 , 𝑈̃ 𝑈̃𝖳) that, by the

aw of large numbers, introduce variance-dependent biases (namely,
2
0𝑁𝐼 and 𝜎2𝑈𝑁𝐼) as 𝑁 grows. However, since the noise variances are
nown, we can include correction terms in (12) that compensate for
hese biases and achieve asymptotically accurate data-driven formulas.
pecifically, (12) can be modified as follows:

𝑥𝑐0
𝐮𝑐𝑇

]

= (𝑃 †
𝑐 )

1
2

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

𝐼𝑛 0

𝑌F

[

𝑋̃0
𝑈̃

]†

𝑐

⎤

⎥

⎥

⎥

⎦

(𝑃 †
𝑐 )

1
2

⎞

⎟

⎟

⎟

⎠

†
[

𝑥0
𝑦f

]

, (23)

where

𝑃𝑐 =

(

𝑌
[

𝑋̃0
𝑈̃

]†

𝑐

)𝖳

𝑄

(

𝑌
[

𝑋̃0
𝑈̃

]†

𝑐

)

+
[

0 0
0 𝑅

]

,

𝑋̃0
̃

]†

=
[

𝑋̃0
̃

]𝖳
(

[

𝑋̃0
̃

] [

𝑋̃0
̃

]𝖳

−
[

𝜎20𝑁𝐼𝑛 0
2

]

)†

,

7

𝑈 𝑐 𝑈 𝑈 𝑈 0 𝜎𝑈𝑁𝐼𝑚𝑇
Fig. 5. This figure shows the asymptotic consistency of 23 for problem (8). The left
panel shows how the controller computed with a noisy dataset with noise compensation
in 23 (solid lines) asymptotically converges to the optimal controller 𝐮∗𝑇 for (8), as
pposed to the non-compensated expression in (12) (dashed lines), for varying noise
tatistics. The experiment is performed over a randomly generated system with 𝑛 = 5,
= 3, 𝑝 = 2 and 𝑇 = 15. Finally, 𝜎0 = 𝜎𝑌 = 0.1, while different values of 𝜎𝑈 are shown

in the legend. The right panel further supports this result by showing how the difference
between 𝑃 and 𝑃𝑐 evolves as the number of experiment increases and the noise in the
data is appropriately accounted for as shown in Theorem 4.1 (here, 𝜎𝑈 = 0.5).

and the following consistency result holds (see the Appendix for the
proof).

Theorem 4.1 (Asymptotic Consistency of 23). Assume that

(i) the columns of 𝑋0 and 𝑈 are i.i.d. and satisfy the condition (4)
almost surely as 𝑁 → ∞, and

(ii) the entries of 𝛥𝑈 , 𝛥0, and 𝛥𝑌 are i.i.d. with zero mean and variances
𝜎2𝑈 , 𝜎20 , 𝜎2𝑌 .

Then, 𝐮𝑐𝑇 in 23 converges almost surely to 𝐮∗𝑇 as 𝑁 → ∞.

Fig. 5 shows the asymptotic consistency of 23, as predicted by
Theorem 4.1, for a randomly generated system.

4.2. Data-driven LQ control with unknown noise statistics

In the more general case of (possibly correlated) perturbations with
unknown second-order statistics, the robustness of (12) can be assessed
through a local sensitivity analysis. Here, we assume for simplicity that
the noise acts on the output measurements only, that is 𝛥0 = 𝛥𝑈 = 0.
However, an analysis similar to the one that follows can be carried out
also for noisy inputs and states. Let

𝐹 (𝑈,𝑋0, 𝑌 ) = (𝑃 †)
1
2

(

[

𝑋0
𝑌F

] [

𝑋0
𝑈

]†

(𝑃 †)
1
2

)†
[

𝑥0
𝑦f

]

(24)

denote the data-driven control map (12) with 𝑃 as in (13), and
supp(𝛥𝑌 ) = {𝑖 ∶ 𝛿𝑌 ,𝑖 ≠ 0}, with 𝛿𝑌 ,𝑖 = vec(𝛥𝑌 )𝑖, denote the set of
corrupted entries of 𝑌 . Since 𝐹 is Fréchet-differentiable with respect to
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𝑌 at the ground truth data, we can write it through its Taylor expansion
as

𝐹 (𝑈,𝑋0, 𝑌 ) = 𝐹 (𝑈,𝑋0, 𝑌 ) + ∇𝐹𝑌 (𝑈,𝑋0, 𝑌 ) vec(𝛥𝑌 )

+ 𝑟(𝑈,𝑋0, 𝑌 , 𝛥𝑌 ), (25)

with lim
‖𝛥𝑌 ‖2→0

‖

‖

𝑟(𝑈,𝑋0, 𝑌 , 𝛥𝑌 )‖‖2∕‖‖𝛥𝑌 ‖‖2 = 0 and where ∇𝐹𝑌 (𝑈,𝑋0, 𝑌 )
is the Jacobian matrix of 𝐹 with respect to 𝑌 calculated at the ground
truth data. If the expected norms of the perturbations are sufficiently
small, then (25) can be well approximated as (see the Appendix)

𝐹 (𝑈,𝑋0, 𝑌 ) ≈ 𝐹 (𝑈,𝑋0, 𝑌 ) + ∇𝐹𝑌 (𝑈,𝑋0, 𝑌 ) vec(𝛥𝑌 ). (26)

For notational convenience, let ∇𝐹𝑌 ,𝑖 be the 𝑖th column of ∇𝐹𝑌
(𝑈,𝑋0, 𝑌 ), and let

𝛥𝑦f = ‖𝑦̃f − 𝑦f‖2

measure the error induced by the noisy data on the final output 𝑦̃f when
using the data-driven control input in (26). We next investigate how
the sensitivity of the data-driven map, as quantified by the norm of the
Jacobian matrix ∇𝐹𝑌 , is related to the data size 𝑁 .

Lemma 4.2 (Properties of ‖∇𝐹𝑌 ‖2 as a Function of 𝑁). Assume that the
entries of 𝑋0, 𝑈 are independent5 of 𝑁 and that 𝜎2min([𝑋

𝖳
0 𝑈

𝖳]𝖳) ≥ 𝑐𝑁
where 𝑐 > 0 is a constant independent of 𝑁 . Then, for all 𝑖 ∈ supp(𝛥𝑌 ),
‖∇𝐹𝑌 ,𝑖‖2 ≤ 𝑘𝑌 ,𝑖∕𝑁 , where 𝑘𝑌 ,𝑖 > 0 are constants independent of 𝑁 .

The condition 𝜎2min([𝑋
𝖳
0 𝑈

𝖳]𝖳) ≥ 𝑐𝑁 is typically satisfied for random
i.i.d. initial conditions and inputs.6 Thus, Lemma 4.2 shows that all
‖∇𝐹𝑌 ,𝑖‖2 typically converge to zero as the number of experiments 𝑁
increases. Under this scenario, as additional data become available,
the map 𝐹 becomes increasingly more robust against corrupted data.
This conclusion is instrumental for the following result, whose proof is
postponed to Appendix.

Theorem 4.3 (Asymptotic Robustness for Sublinear Number of Perturba-
tions). In addition to the assumptions in Lemma 4.2, assume also that the
entries of 𝛥𝑌 are independent of 𝑁 . Then, if the cardinality of supp(𝛥𝑌 )
grows sublinearly7 with 𝑁 , for any 𝜏 > 0,

lim
𝑁→∞

P
[

𝛥𝑦f ≥ 𝜏
]

= 0. (27)

Theorem 4.3 guarantees that the error in the final output decreases
to zero when 𝑁 increases, regardless of 𝛥𝑌 (see Fig. 6 for a numerical
example). This ensures the robustness of the data-driven control action
for small, possibly adversarial, perturbations.

Remark 5 (Comparison with Existing Approaches). Numerous studies
have focused on developing data-driven controllers that can effec-
tively handle disturbances generated by worst-case or stochastic noise
models. Most of the existing approaches rely on robustified versions
of data-based optimization problems, typically achieved through suit-
able regularizations (e.g., see Berberich, Köhler, Müller, & Allgöwer,
2020; Breschi, Chiuso, & Formentin, 2023; Coulson, Lygeros, & Dörfler,
2021; De Persis & Tesi, 2021; Dörfler, Tesi, & De Persis, 2023) or by
leveraging classic robust control tools (e.g., see Berberich, Scherer, &
Allgöwer, 2022; Bisoffi, De Persis, & Tesi, 2021, 2022; van Waarde,
Camlibel and Mesbahi, 2020). The distinctive feature of the approach
of this paper lies in the use of closed-form expressions which allows
to asymptotically compensate the influence of noise and to explicitly
characterize the sensitivity of data-driven controls. □

5 We say that a random variable 𝑥 is independent of a deterministic
arameter 𝛼 if the distribution of 𝑥 is not a function of 𝛼.

6 If 𝑈 and 𝑋0 have i.i.d. entries with zero mean and variance 𝜎2,
1
𝑁
𝜎2min([𝑋

𝖳
0 𝑈𝖳]𝖳) tends almost surely to 𝜎2 as 𝑁 tends to infinity by the law

of large numbers.
7 A sequence {𝑥 } grows sublinearly with 𝑛 if lim 𝑥 ∕𝑛 = 0.
8

𝑛 𝑛→∞ 𝑛
Fig. 6. This figure shows the convergence results of Theorem 4.3. As implied by
the theorem, although the noise statistics remain unknown, the difference between
the desired final output and that computed with a noisy dataset approaches zero as
the number of experiments increases. The experiment is performed over a randomly
generated system with 𝑛 = 5, 𝑚 = 3, 𝑝 = 2 and 𝑇 = 15. The noise on the output is
additive, gaussian, and with distribution  (1, 0.5).

5. Data-driven formulas for closed-loop LQ control

In this section we study the LQ control problem

minimize𝑢, 𝑥

𝑇−1
∑

𝑡=0

(

‖𝑥(𝑡)‖2𝑄𝑡 + ‖𝑢(𝑡)‖2𝑅𝑡

)

subject to 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),

𝑥(0) = 𝑥0.

(28)

Differently from Problem (8), Problem (28) does not impose a terminal
onstraint on the output trajectory and it thus allows for a solution
n feedback form. In particular, the (model-based) input that solves
roblem (28) is

(𝑡) = −(𝑅𝑡 + 𝐵𝖳𝑃𝑡+1𝐵)−1𝐵𝖳𝑃𝑡+1𝐴
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐾 𝑡LQR

𝑥(𝑡), (29)

here 𝑃𝑡 satisfies the Riccati equation

𝑡−1 = 𝑄𝑡 + 𝐴𝖳𝑃𝑡𝐴 − 𝐴𝖳𝑃𝑡𝐵(𝑅𝑡 + 𝐵𝖳𝑃𝑡𝐵)−1𝐵𝖳𝑃𝑡𝐴, (30)

nd 𝑃𝑇 = 0 (Lancaster & Rodman, 1995). As a known result, when 𝑄
nd 𝑅 are time-invariant and 𝑇 = ∞, the time-varying control law (29)
educes to a time-invariant control law, in which case the solution to
roblem (28) becomes

(𝑡) = 𝐾LQR𝑥(𝑡).

n this section we show how a dataset of finite length can be used to
ompute the time-varying feedback 𝐾 𝑡

LQR as well as to estimate the
tatic feedback 𝐾LQR. The main ideas behind our approach are that
i) optimal open-loop input and state trajectories that solve the LQ
roblem (28) can be computed from data, similarly to the approach
n Section 3, and (ii) the feedback gains 𝐾 𝑡

LQR can be computed solving
inear regression problems between optimal open-loop input and state
rajectories.

heorem 5.1 (Data-driven Finite-Horizon LQR Gains). Let 𝑈𝑡 and 𝑋𝑡 be
he submatrices of 𝑈 and 𝑋 in (2) obtained by selecting only the inputs and
tates at time 𝑡, and define the matrices 𝐿 =

[

(𝑄1∕2𝑋𝐾)𝖳 (𝑅1∕2𝑈𝐾)𝖳
]𝖳,

nd

𝑡 = 𝑈𝑡𝐾(𝐼 −𝐾𝑊 (𝐿𝐾𝑊 )†𝐿)𝑊 †, (31)

𝑡 =

{

𝐼, 𝑡 = 0,
𝑋𝑡𝐾(𝐼 −𝐾𝑊 (𝐿𝐾𝑊 )†𝐿)𝑊 †, 𝑡 > 0,

(32)
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Fig. 7. This figure supports the results of Section 5. In particular, we compute 𝐾0
LQR

sing Theorem 5.1 for increasing 𝑇 . As expected from (34) the distance between 𝐔0 and
LQR, computed as the 2-norm of their difference, decreases as 𝑇 grows. The experiment

s performed over a randomly generated system with 𝑛 = 5 and 𝑚 = 2.

ith 𝑊 = 𝑋0𝐾 and 𝐾𝑊 = Basis(Ker(𝑊 )). Then,8

𝑡
LQR = 𝐔𝑡(𝐗𝑡)−1. (33)

A proof of Theorem 5.1 is postponed to Appendix. The above result
llows us to compute any element of the sequence of time-varying con-
rollers 𝐾 𝑡

LQR as long as 𝑡 ≤ 𝑇 , where 𝑇 is the horizon of the available
ataset (2). Interestingly, Theorem 5.1 only uses forward trajectories
f the system and provides a closed-form, explicit expression of the
QR gains, thus avoiding the use of recursive, implicit Riccati equations
r backward-in-time dynamic programming. We highlight that 𝐾0

LQR
onverges to the steady state gain 𝐾LQR as 𝑇 increases (see also Fig. 7).
n particular, we have

𝐔0 −𝐾LQR‖2 ≤ 𝑐𝜌𝑇 , (34)

here 𝑐 > 0 and 0 < 𝜌 < 1 are suitable constants independent of 𝑡
Lancaster & Rodman, 1995).

emark 6 (Related Work on Data-Driven LQ Control). Linear quadratic
ontrol has received the most attention in the recent data-driven control
iterature. As opposed to the direct and closed-formulas discussed in
his paper and, e.g., in Pellegrino et al. (2023a, 2023b), most ap-
roaches in the literature rely on indirect schemes (Aangenent, Kostic,
e Jager, van de Molengraft, & Steinbuch, 2005; da Silva et al., 2018),
here a model of the system is first identified, optimization-based

chemes (Coulson, Lygeros, & Dörfler, 2019; De Persis & Tesi, 2020;
örfler, Tesi, & De Persis, 2022; Rotulo, De Persis, & Tesi, 2020),
r iterative schemes inspired by reinforcement learning approaches
Abbasi-Yadkori, Lazic, & Szepesvári, 2019; Bradtke, Ydstie, & Barto,
994; Dean, Mania, Matni, Recht, & Tu, 2020; Fazel, Ge, Kakade,
Mesbahi, 2018; Gravell, Esfahani, & Summers, 2020; Mohammadi,

are, Soltanolkotabi, & Jovanović, 2019; Recht, 2019), among others.
lternative data-driven approaches to Theorem 5.1 to compute feed-
ack gains can be found, among others, in Al Makdah et al. (2022), Celi
nd Pasqualetti (2022), De Persis and Tesi (2020) and Bianchin (2023),
eli et al. (2023a), which solve the general eigenstructure assignment
roblem via static feedback in a purely data-driven manner. □

. Conclusion and future work

This tutorial paper presents a framework to solve a variety of
inear quadratic control problems for linear systems using a dataset of
nput, state, and output trajectories collected offline, and to analyze

8 We assume here that the matrix 𝐴 is invertible, which guarantees that 𝐗𝑡
s also invertible (see Appendix). When 𝐗𝑡 is not invertible, the gain 𝐔𝑡(𝐗𝑡)†

enerates the input sequence that solves (28), but it may differ from the gain
𝑡 computed as in (29).
9

LQR
the robustness of these solutions to noise and arbitrary perturbations.
Differently from approaches relying on system identification, optimiza-
tion, and policy iteration, this paper presents a set of closed-form
expressions for optimal and sub-optimal control sequences, which are
computationally efficient, insightful, and enable a direct sensitivity
analysis of data-driven control. In fact, in some cases, these formulas
display favorable computational properties even when compared to
classic model-based solutions, while also avoiding the solution of typi-
cally implicit and recursive Riccati equations. The paper contains also
a number of numerical studies to validate the approach and showcase
its tradeoffs.

This paper shows that the data-driven approach to control may
offer solutions that are computationally advantageous with respect to
classic methods in the state–space, frequency, or geometric approaches.
However, a detailed analysis of when data-driven methods should be
preferred to classic ones, a comprehensive comparison of direct and
indirect methods, the extension beyond linear quadratic control, among
others, remain outstanding timely questions and potentially interesting
research avenues.
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Appendix

A.1. Proof of the results in Section 2

We start with the following technical result.

Lemma A.1 (Rank of Block Matrices). Let 𝐴 ∈ R𝑛1×𝑚 and 𝐵 ∈ R𝑛2×𝑚,
with 𝑚 ≥ 𝑛1 + 𝑛2. Let 𝐾𝐴 = Basis(Ker(𝐴)) and 𝐾𝐵 = Basis(Ker(𝐵)). The
following statements are equivalent:

(i) Rank
([

𝐴
𝐵

])

= 𝑛1 + 𝑛2;

(ii) Rank(𝐴𝐾𝐵) = 𝑛1 and Rank(𝐵𝐾𝐴) = 𝑛2.

Proof. ((ii) implies (i).) We will show that statement (ii) is violated
when statement (i) is violated. Let vectors 𝑣𝐴 and 𝑣𝐵 satisfy 𝑣𝐴𝐴+𝑣𝐵𝐵 =
0, with [𝑣𝐴 𝑣𝐵] ≠ 0. Then, 𝑣𝐴𝐴𝐾𝐵+𝑣𝐵𝐵𝐾𝐵 = 𝑣𝐴𝐴𝐾𝐵 = 0, which implies
that either 𝑣𝐴 = 0 or Rank(𝐴𝐾𝐵) < 𝑛1. Similarly, 𝑣𝐴𝐴𝐾𝐴 + 𝑣𝐵𝐵𝐾𝐴 =
𝑣𝐵𝐵𝐾𝐴 = 0, which implies that either 𝑣𝐵 = 0 or Rank(𝐵𝐾𝐴) < 𝑛2. Since
𝐴 and 𝑣𝐵 cannot be simultaneously zero, we conclude that statement
ii) implies (i).

((i) implies (ii).) Notice that

ank
([

𝐴
𝐵

])

= Rank
([

𝐴
𝐵

]

𝐶
)

,

ith 𝐶 any invertible matrix of appropriate dimension. Let 𝐶 =
𝐾𝐵 𝐵𝖳]. Then,

1 + 𝑛2 = Rank
([

𝐴
𝐵

])

= Rank
([

𝐴
𝐵

]

[

𝐾𝐵 𝐵𝖳
]

)

= Rank
([

𝐴𝐾𝐵 𝐴𝐵𝖳

0 𝐵𝐵𝖳

])

,

hich implies that Rank(𝐴𝐾𝐵) = 𝑛1. Repeating the reasoning with
= [𝐾𝐴 𝐴𝖳] concludes the proof. ■

We are now ready to prove Lemma 2.1.
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Proof of Lemma 2.1. Using (4) and Lemma A.1, the matrices 𝑋0𝐾𝑈
and 𝑈𝐾0 are full-row rank. Hence, for every 𝑥0 and 𝐮𝑇 there exist 𝛼 and

such that 𝑥0 = 𝑋0𝐾𝑈𝛼 and 𝐮𝑇 = 𝑈𝐾0𝛽. Notice that the data matrices
atisfy the relations
[

𝑋
𝑌

]

=

[

𝑂𝑋𝑇 𝐹𝑋𝑇
𝑂𝑌𝑇 𝐹 𝑌𝑇

]

[

𝑋0
𝑈

]

, (35)

here

𝑋
𝑇 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐴
𝐴2

⋮
𝐴𝑇

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐹𝑋𝑇 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐵 ⋯ 0 0
𝐴𝐵 ⋯ 0 0

⋱
𝐴𝑇−1𝐵 ⋯ 𝐴𝐵 𝐵

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑂𝑌𝑇 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑇−1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐹 𝑌𝑇 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐷 ⋯ 0 0
𝐶𝐵 ⋯ 0 0

⋱
𝐶𝐴𝑇−2𝐵 ⋯ 𝐶𝐵 𝐷

⎤

⎥

⎥

⎥

⎥

⎦

.

otice that

𝐾𝑈 = 𝑂𝑋𝑇 𝑋0𝐾𝑈 + 𝐹𝑋𝑇 𝑈𝐾𝑈 = 𝑂𝑋𝑇 𝑋0𝐾𝑈 ,

𝑋𝐾0 = 𝑂𝑋𝑇 𝑋0𝐾0 + 𝐹𝑋𝑇 𝑈𝐾0 = 𝐹𝑋𝑇 𝑈𝐾0.

hen, the state trajectory 𝑥𝑇 of (1) with input 𝐮𝑇 = 𝑈𝐾0𝛽 and initial
tate 𝑥0 = 𝑋0𝐾𝑈𝛼 can be written as

𝑇 = 𝑂𝑋𝑇 𝑥0 + 𝐹
𝑋
𝑇 𝐮𝑇 = 𝑂𝑋𝑇 𝑋0𝐾𝑈𝛼 + 𝐹𝑋𝑇 𝑈𝐾0𝛽

= 𝑋𝐾𝑈𝛼 +𝑋𝐾0𝛽.

he claimed expression for 𝐲𝑇 is obtained similarly using the matrices
𝑌
𝑇 and 𝐹 𝑌𝑇 , thus concluding the proof. ■

We now provide a proof of Lemma 2.2.

roof of Lemma 2.2. Notice from (35) that 𝑌 𝐾𝑈 = 𝑂𝑌𝑇𝑋0𝐾𝑈 . From
ernstein (2009, Fact 2.10.2), Im(𝑂𝑌𝑇𝑋0𝐾𝑈 ) = Im(𝑂𝑌𝑇 ) since 𝑋0𝐾𝑈 is
ull row-rank (cif. (4) and Lemma A.1). Hence, Rank(𝑂𝑌𝑇 ) = Rank(𝑌 𝐾𝑈 ).

Similarly, 𝑋F𝐾0 = 𝐶𝑇𝑈𝐾0 and 𝑈𝐾0 is full row-rank, thus implying that
Rank(𝐶𝑇 ) = Rank(𝑋F𝐾0), which concludes the proof. ■

A.2. Proof of the results in Section 3

Proof of Eq. (12). Problem (8) can be equivalently rewritten as

minimize𝐮𝑇

‖

‖

‖

‖

‖

𝑃
1
2

[

𝑥(0)
𝐮𝑇

]

‖

‖

‖

‖

‖

2

2

subject to
[

𝐼 0
𝑂𝑌F 𝐹 𝑌F

] [

𝑥(0)
𝐮𝑇

]

=
[

𝑥0
𝑦f

]

,

(36)

where 𝑂𝑌F and 𝐹 𝑌F denotes the last 𝑝 rows of the matrices 𝑂𝑌𝑇 and 𝐹 𝑌𝑇 ,
nd

=
[

𝑂𝑌𝑇 𝐹 𝑌𝑇
]𝖳𝑄

[

𝑂𝑌𝑇 𝐹 𝑌𝑇
]

+
[

0 0
0 𝑅

]

(37)

rom the assumptions 𝑅 ≻ 0 and Rank(𝑄1∕2𝑂𝑌𝑇 ) = 𝑛, it follows that
≻ 0 (see Celi et al. (2023b, Theorem III.1) for a proof of this fact).

hen, by defining

= 𝑃
1
2

[

𝑥(0)
𝐮𝑇

]

,

we can rewrite (36) as

minimize𝑣 ‖𝑣‖22

subject to
[

𝐼 0
𝑌 𝑌

]

𝑃− 1
2 𝑣 =

[

𝑥0
]

.

(38)
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The minimizer of (38) is

𝑣∗ =
([

𝐼 0
𝑂𝑌F 𝐹 𝑌F

]

𝑃− 1
2

)† [
𝑥0
𝑦f

]

.

Thus, the solution 𝐮∗𝑇 to (36) satisfies
[

𝑥0
𝐮∗𝑇

]

= 𝑃− 1
2 𝑣∗ = 𝑃− 1

2

([

𝐼 0
𝑂𝑌F 𝐹 𝑌F

]

𝑃− 1
2

)† [
𝑥0
𝑦f

]

.

To conclude, note that, under assumption (4), 𝑃 in (37) equals (13) and
[

𝐼𝑛 0
𝑂𝑌F 𝐹 𝑌F

]

=
[

𝑋0
𝑌𝐹

] [

𝑋0
𝑈

]†

,

from which (12) follows. ■

Proof of Lemma 3.3. From Lemma 2.1, there exist vectors 𝛼 and 𝛽1
such that 𝑥0 = 𝑋0,𝓁1𝐾𝑈,𝓁1𝛼 and 𝐮𝑇1 = 𝑈𝓁1

𝐾0,𝓁1𝛽1, and the corresponding
state trajectory in the interval [1, 𝑇𝓁1 ] is

𝐱𝑇𝓁1 = 𝑋𝓁1
𝐾𝑈,𝓁1𝛼 +𝑋𝓁1

𝐾0,𝓁1𝛽1.

n particular, it holds

(𝑇𝓁1 ) = 𝑋𝐹 ,𝓁1𝐾𝑈,𝓁1𝛼 +𝑋𝐹 ,𝓁1𝐾0,𝓁1𝛽1,

ext, since 𝑋0,𝓁2𝐾𝑈,𝓁2 has full row rank, we have

(𝑇𝓁1 ) = 𝑋0,𝓁2𝐾𝑈,𝓁2𝛾,

here

= (𝑋0,𝓁2𝐾𝑈,𝓁2 )
†(𝑋𝐹 ,𝓁1𝐾𝑈,𝓁1𝛼 +𝑋𝐹 ,𝓁1𝐾0,𝓁1𝛽1)

= 𝑉1𝛼 +𝑍1𝛽1.

hus, using Lemma 2.1 again, there exist a vector 𝛽2 such that the input
n the interval [0, 𝑇𝓁1 + 𝑇𝓁2 − 1] can be written as

𝑇𝓁1+𝑇𝓁2
=
[

𝑈𝓁1
𝐾0,𝓁1 0
0 𝑈𝓁2

𝐾0,𝓁2

] [

𝛽1
𝛽2

]

,

nd the corresponding state trajectory in [1, 𝑇𝓁1 + 𝑇𝓁2 ] as

𝑇𝓁1+𝑇𝓁2
=
[

𝑋𝓁1
𝐾𝑈,𝓁1𝛼 +𝑋𝓁1

𝐾0,𝓁1𝛽1
𝑋𝓁2

𝐾𝑈,𝓁2𝛾 +𝑋𝓁2
𝐾0,𝓁2𝛽2

]

=
[

𝑋𝓁1
𝐾𝑈,𝓁1𝛼 +𝑋𝓁1

𝐾0,𝓁1𝛽1
𝑋𝓁2

𝐾𝑈,𝓁2𝑉1𝛼 +𝑋𝓁2
𝐾𝑈,𝓁2𝑍1𝛽1 +𝑋𝓁2

𝐾0,𝓁2𝛽2

]

=
[

𝑋𝓁1
𝐾𝑈,𝓁1 𝑋𝓁1

𝐾0,𝓁1 0
𝑋𝓁2

𝐾𝑈,𝓁2𝑉1 𝑋𝓁2
𝐾𝑈,𝓁2𝑍1 𝑋𝓁2

𝐾0,𝓁2

]

⎡

⎢

⎢

⎣

𝛼
𝛽1
𝛽2

⎤

⎥

⎥

⎦

.

The expression of 𝐱𝑇 in (21) follows by iterating the previous argument
𝑝 times and collecting all 𝛽𝑖 as 𝛽 = [𝛽𝖳1 ⋯ 𝛽𝖳𝑝 ]

𝖳. A similar reasoning holds
for the output trajectory 𝐲𝑇 . ■

A.3. Proof of the results in Section 4

Proof of Theorem 4.1. By the strong law of large numbers (Van der
Vaart, 2000) and the assumptions (i)-(ii) on the experiments and noise,
as 𝑁 grows, the entries of 1

𝑁𝑋0𝛥𝖳0 , 1
𝑁𝑋0𝛥𝖳𝑈 , 1

𝑁 𝑈𝛥
𝖳
0 , 1

𝑁 𝑈𝛥
𝖳
𝑈 , 1

𝑁 𝛥0𝛥
𝖳
𝑈

tend to zero almost surely, while 1
𝑁 𝛥0𝛥

𝖳
0 and 1

𝑁 𝛥𝑈𝛥
𝖳
𝑈 tend to 𝜎20𝐼 , 𝜎2𝑈 𝐼

almost surely. This implies that, as 𝑁 → ∞,

1
𝑁

[

𝑋̃0
𝑈̃

] [

𝑋̃0
𝑈̃

]𝖳 a.s.
←←←←←←←←←←←←←←→

1
𝑁

[

𝑋0
𝑈

] [

𝑋0
𝑈

]𝖳

+
[

𝜎20𝐼𝑛 0
0 𝜎2𝑈 𝐼𝑚𝑇

]

, (39)

Similarly, by the strong law of large numbers, the entries of 1
𝑁 𝑌 𝛥

𝖳
0 ,

1
𝑁 𝑌 𝛥

𝖳
𝑈 , 1

𝑁 𝑈𝛥
𝖳
𝑌 , 1

𝑁𝑋0𝛥𝖳𝑌 , 1
𝑁 𝛥𝑈𝛥

𝖳
𝑌 , 1

𝑁 𝛥0𝛥
𝖳
𝑌 tend to zero almost surely

with 𝑁 , so that, as 𝑁 → ∞,

1 𝑌
[

𝑋̃0
]𝖳 a.s.

←←←←←←←←←←←←←←→
1 𝑌

[

𝑋0
]𝖳

. (40)

𝑁 𝑈̃ 𝑁 𝑈
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Eqs. (39) and (40) imply that, as 𝑁 → ∞,

𝑌
[

𝑋̃0
𝑈̃

]†

𝑐
= 1
𝑁
𝑌
[

𝑋̃0
𝑈̃

]𝖳
(

1
𝑁

[

𝑋̃0
𝑈̃

] [

𝑋̃0
𝑈̃

]𝖳

−
[

𝜎20𝐼𝑛 0
0 𝜎2𝑈 𝐼𝑚𝑇

]

)†

a.s.
←←←←←←←←←←←←←←→ 𝑌

[

𝑋0
𝑈

]𝖳
(

[

𝑋0
𝑈

] [

𝑋0
𝑈

]𝖳
)†

= 𝑌
[

𝑋0
𝑈

]†

.

Since the map in (23) is a continuous function of 𝑈̃ , 𝑋̃0, 𝑌 at 𝛥𝑈 =
𝛥0 = 𝛥𝑌 = 0, from the previous equation and the continuous mapping
theorem (Van der Vaart, 2000), as 𝑁 → ∞,

[

𝑥𝑐0
𝐮𝑐𝑇

]

a.s.
←←←←←←←←←←←←←←→𝑃− 1

2

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

𝐼𝑛 0

𝑌F

[

𝑋0
𝑈

]†
⎤

⎥

⎥

⎥

⎦

𝑃− 1
2

⎞

⎟

⎟

⎟

⎠

†
[

𝑥0
𝑦f

]

= 𝑃− 1
2

(

[

𝑋0
𝑌F

] [

𝑋0
𝑈

]†

𝑃− 1
2

)†
[

𝑥0
𝑦f

]

=
[

𝑥0
𝐮∗𝑇

]

,

where we used the identity 𝑋0

[

𝑋0
𝑈

]†

=
[

𝐼𝑛 0
]

, which holds when
[

𝑋0
𝑈

]

has full row rank, and the fact that (4) is satisfied almost surely
as 𝑁 → ∞. ■

The following result, whose proof follows from Anguluri et al.
(2020, Lemma1), confirms that when the expected norm of the per-
turbation 𝛥𝑌 is small so is the residual 𝑟 of the expansion (25).

Lemma A.2 (FirSt-Order Approximation of 𝐹 (𝑈,𝑋0, 𝑌 )). Let ∇𝐹𝑌 ,𝑖 be the
𝑖th column of ∇𝐹𝑌 and

𝛴 = 𝐹 (𝑈,𝑋0, 𝑌 ) − 𝐹 (𝑈,𝑋0, 𝑌 ) −
∑

𝑖∈supp(𝛥𝑌 )
𝛿𝑌 ,𝑖∇𝐹𝑌 ,𝑖(𝑈,𝑋0, 𝑌 ).

Then, for any 𝜏 > 0,

lim
E[‖vec(𝛥𝑌 )‖2]→0

P
[

‖𝛴‖2 ≥ 𝜏
√

E[‖
‖

vec(𝛥𝑌 )‖‖2]
]

= 0.

Proof of Lemma 4.2. Let

𝐺 =
[

𝑋0
𝑌F

] [

𝑋0
𝑈

]†

and rewrite (24) as

𝐹 (𝑈,𝑋0, 𝑌 ) = 𝑃− 1
2
(

𝐺𝑃− 1
2
)† [𝑥0

𝑦f

]

= 𝑃−1𝐺𝖳
(

𝐺𝑃−1𝐺𝖳
)−1

[

𝑥0
𝑦f

]

.

et 𝑦𝑖 denote the 𝑖th element of vec(𝑌 ), it holds

𝐹𝑌 ,𝑖 =
𝜕𝐹 (𝑈,𝑋0, 𝑌 )

𝜕𝑦𝑖

= 𝜕𝑃−1

𝜕𝑦𝑖
𝐺𝖳

(

𝐺𝑃−1𝐺𝖳
)−1

[

𝑥0
𝑦f

]

(41)

+ 𝑃−1 𝜕𝐺𝖳

𝜕𝑦𝑖

(

𝐺𝑃−1𝐺𝖳
)−1

[

𝑥0
𝑦f

]

(42)

+ 𝑃−1𝐺𝖳
𝜕
(

𝐺𝑃−1𝐺𝖳
)−1

𝜕𝑦𝑖

[

𝑥0
𝑦f

]

. (43)

otice that

𝑃 =

(

𝑌
[

𝑋0
𝑈

]†)𝖳

𝑄

(

𝑌
[

𝑋0
𝑈

]†)

+
[

0 0
0 𝑅

]

=
[

𝑂𝑌𝑇 𝐹 𝑌𝑇
]𝖳𝑄

[

𝑂𝑌𝑇 𝐹 𝑌𝑇
]

+
[

0 0
0 𝑅

]

, (44)

=
[

𝐼𝑛 0
𝑌 𝑌

]

(45)
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ince (4) holds by assumption.
Let ∇𝐹 (1)

𝑌 ,𝑖 denote the matrix in (41). This matrix can be written
s in (46) (see Box II), where 𝛤𝑖 is a 𝑛𝑇 × 𝑁 matrix with one entry
corresponding to the element 𝑦𝑖) equal to one and zeros otherwise,
nd where we used that 𝜕𝑃−1

𝜕𝑦𝑖
= 𝑃−1 𝜕𝑃

𝜕𝑦𝑖
𝑃−1 (e.g., see Bernstein, 2009).

From (46),

‖∇𝐹 (1)
𝑌 ,𝑖‖2 ≤ 𝓁(1)

𝑌 ,𝑖

‖

‖

‖

‖

‖

‖

𝛤𝑖

[

𝑋0
𝑈

]†‖
‖

‖

‖

‖

‖2

≤ 𝓁(1)
𝑌 ,𝑖

‖

‖

‖

‖

‖

‖

𝛤𝑖

[

𝑋0
𝑈

]𝖳
(

[

𝑋0
𝑈

][

𝑋0
𝑈

]𝖳
)−1

‖

‖

‖

‖

‖

‖2

≤ 𝓁(1)
𝑌 ,𝑖

‖

‖

‖

‖

‖

𝛤𝑖

[

𝑋0
𝑈

]𝖳
‖

‖

‖

‖

‖2
𝜎−2min

([

𝑋0
𝑈

])

≤ 𝓁(1)
𝑌 ,𝑖

‖

‖

‖

‖

‖

𝛤𝑖

[

𝑋0
𝑈

]𝖳
‖

‖

‖

‖

‖2

1
𝑐𝑁

, (49)

where

𝓁(1)
𝑌 ,1 =2‖𝑃

−1
‖

2
2‖𝑄‖2 ∥

[

𝑂𝑌𝑇 𝐹 𝑌𝑇
]

∥2 ⋅

⋅
‖

‖

‖

‖

‖

𝑃−1𝐺𝖳
(

𝐺𝑃−1𝐺𝖳
)−1

[

𝑥0
𝑦f

]

‖

‖

‖

‖

‖2

does not depend on 𝑁 because of (44), (45). In the first step of (49)
we used the submultiplicativity of matrix 2-norm, in the second step
the fact that 𝐴† = 𝐴𝖳(𝐴𝐴𝖳)−1 when 𝐴 is full-row rank, the third
tep follows from the fact that ‖

‖

‖

𝐴−1‖
‖

‖2
equals the reciprocal of the

inimum eigenvalue of 𝐴 if 𝐴 is positive definite, and the fourth step
rom the assumption on 𝜎2min([𝑋

𝖳
0 𝑈

𝖳]𝖳) ≥ 𝑐𝑁 . Finally, since the matrix
𝑖
[

𝑋𝖳
0 𝑈𝖳

]

has only one row different from zero and the entries
f such row are independent of 𝑁 by assumption, (49) implies that
∇𝐹 (1)

𝑌 ,𝑖‖2 ≤ 𝑘(1)𝑌 ,𝑖∕𝑁 , where 𝑘(1)𝑌 ,𝑖 > 0 is a constant independent of 𝑁 .
Next, let ∇𝐹 (2)

𝑌 ,𝑖 denote the matrix in (42). We can write ∇𝐹 (2)
𝑌 ,𝑖 as in

47) (see Box II), where 𝛯𝑖 is a matrix with one entry set to one and
ll other entries set to zero, if 𝑦𝑖 corresponds to an entry of 𝑌𝐹 , and the
ero matrix, otherwise. Similarly as before, we have

∇𝐹 (2)
𝑌 ,𝑖‖2 ≤ 𝓁(2)

𝑌 ,𝑖

‖

‖

‖

‖

‖

𝛯𝑖

[

𝑋0
𝑈

]𝖳
‖

‖

‖

‖

‖2

1
𝑐𝑁

, (50)

where

𝓁(1)
𝑌 ,2 = ‖𝑃−1

‖

2
2

‖

‖

‖

‖

‖

(

𝐺𝑃−1𝐺𝖳
)−1

[

𝑥0
𝑦f

]

‖

‖

‖

‖

‖2

does not depend on 𝑁 . Since the matrix 𝛯𝑖
[

𝑋𝖳
0 𝑈𝖳

]

is either the
zero matrix or has only one row different from zero and the entries
of such row are independent of 𝑁 by assumption, (50) implies that
‖∇𝐹 (2)

𝑌 ,𝑖‖2 ≤ 𝑘(2)𝑌 ,𝑖∕𝑁 , where 𝑘(2)𝑌 ,𝑖 > 0 is a constant independent of 𝑁 .

Finally, let ∇𝐹 (3)
𝑌 ,𝑖 denote the matrix in (43). We can write ∇𝐹 (3)

𝑌 ,𝑖 as in
48) (see Box II). From the triangle inequality of the 2-norm and along
he same lines that led to the upper bounds on ‖∇𝐹 (1)

𝑌 ,𝑖‖2 and ‖∇𝐹 (2)
𝑌 ,𝑖‖2,

∇𝐹 (3)
𝑌 ,𝑖‖2 ≤ 𝓁(3,1)

𝑌 ,𝑖

‖

‖

‖

‖

‖

𝛤𝑖

[

𝑋0
𝑈

]𝖳
‖

‖

‖

‖

‖2

1
𝑐𝑁

+ 𝓁(3,2)
𝑌 ,𝑖

‖

‖

‖

‖

‖

𝛯𝑖

[

𝑋0
𝑈

]𝖳
‖

‖

‖

‖

‖2

1
𝑐𝑁

≤ 𝑘(3)𝑌 ,𝑖∕𝑁 (51)

or suitable positive constants 𝓁(3,1)
𝑌 ,𝑖 , 𝓁(3,2)

𝑌 ,𝑖 , 𝑘(3)𝑌 ,𝑖 independent of 𝑁 .
To conclude, from the triangle inequality and the above upper

ounds on ‖∇𝐹 (1)
𝑌 ,𝑖‖2, ‖∇𝐹

(2)
𝑌 ,𝑖‖2, ‖∇𝐹

(3)
𝑌 ,𝑖‖2,

∇𝐹𝑦,𝑖‖2 ≤ ‖∇𝐹 (1)
𝑌 ,𝑖‖2 + ‖∇𝐹 (2)

𝑌 ,𝑖‖2 + ‖∇𝐹 (3)
𝑌 ,𝑖‖2 ≤

𝑘𝑌 ,𝑖
𝑁

where 𝑘 > 0 is independent of 𝑁 . ■
𝑌 ,𝑖



Annual Reviews in Control 56 (2023) 100916F. Celi et al.

B
i
P

b
e

P

P

∇𝐹 (1)
𝑌 ,𝑖 =

𝜕𝑃−1

𝜕𝑦𝑖
𝐺𝖳

(

𝐺𝑃−1𝐺𝖳
)−1

[

𝑥0
𝑦f

]

= 𝑃−1 𝜕𝑃
𝜕𝑦𝑖

𝑃−1𝐺𝖳
(

𝐺𝑃−1𝐺𝖳
)−1

[

𝑥0
𝑦f

]

= 𝑃−1
⎛

⎜

⎜

⎝

(

𝛤𝑖

[

𝑋0
𝑈

]†)𝖳

𝑄𝑌
[

𝑋0
𝑈

]†

+

(

𝑌
[

𝑋0
𝑈

]†)𝖳

𝑄𝛤𝑖

[

𝑋0
𝑈

]†
⎞

⎟

⎟

⎠

𝑃−1𝐺𝖳
(

𝐺𝑃−1𝐺𝖳
)−1

[

𝑥0
𝑦f

]

= 𝑃−1
⎛

⎜

⎜

⎝

(

𝛤𝑖

[

𝑋0
𝑈

]†)𝖳

𝑄
[

𝑂𝑌𝑇 𝐹 𝑌𝑇
]

+
[

𝑂𝑌𝑇 𝐹 𝑌𝑇
]𝖳𝑄𝛤𝑖

[

𝑋0
𝑈

]†
⎞

⎟

⎟

⎠

𝑃−1𝐺𝖳
(

𝐺𝑃−1𝐺𝖳
)−1

[

𝑥0
𝑦f

]

, (46)

∇𝐹 (2)
𝑌 ,𝑖 = 𝑃−1 𝜕𝐺𝖳

𝜕𝑦𝑖

(

𝐺𝑃−1𝐺𝖳
)−1

[

𝑥0
𝑦f

]

= 𝑃−1𝛯𝑖

[

𝑋0
𝑈

]†
(

𝐺𝑃−1𝐺𝖳
)−1

[

𝑥0
𝑦f

]

, (47)

∇𝐹 (3)
𝑌 ,𝑖 = 𝑃−1𝐺𝖳

𝜕
(

𝐺𝑃−1𝐺𝖳
)−1

𝜕𝑦𝑖

[

𝑥0
𝑦f

]

= 𝑃−1𝐺𝖳
(

𝐺𝑃−1𝐺𝖳
)−1 𝜕(𝐺𝑃−1𝐺𝖳)

𝜕𝑦𝑖

(

𝐺𝑃−1𝐺𝖳
)−1

[

𝑥0
𝑦f

]

= 𝑃−1𝐺𝖳
(

𝐺𝑃−1𝐺𝖳
)−1 𝜕𝐺

𝜕𝑦𝑖
𝑃−1𝐺𝖳

(

𝐺𝑃−1𝐺𝖳
)−1

[

𝑥0
𝑦f

]

+ 𝑃−1𝐺𝖳
(

𝐺𝑃−1𝐺𝖳
)−1 𝐺𝑃−1 𝜕𝑃

𝜕𝑦𝑖
𝑃−1𝐺𝖳

(

𝐺𝑃−1𝐺𝖳
)−1

[

𝑥0
𝑦f

]

+ 𝑃−1𝐺𝖳
(

𝐺𝑃−1𝐺𝖳
)−1 𝐺𝑃−1 𝜕𝐺𝖳

𝜕𝑦𝑖

(

𝐺𝑃−1𝐺𝖳
)−1

[

𝑥0
𝑦f

]

. (48)
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Proof of Theorem 4.3. By definition of 𝛥𝑦f ,

𝛥𝑦f = ‖𝑦̃f − 𝑦f‖2 =
‖

‖

‖

‖

‖

‖

∑

𝑖∈supp(𝛥𝑌 )
𝛿𝑌 ,𝑖

[

𝑂𝑌𝑇 𝐹 𝑌𝑇
]

∇𝐹𝑌 ,𝑖
‖

‖

‖

‖

‖

‖2

,

≤
∑

𝑖∈supp(𝛥𝑌 )
|𝛿𝑌 ,𝑖|

‖

‖

‖

[

𝑂𝑌𝑇 𝐹 𝑌𝑇
]

∇𝐹𝑌 ,𝑖
‖

‖

‖2
= 𝛥𝑦f . (52)

y the monotonicity of probability measures, for any 𝜏 > 0, the set
nclusion {𝛥𝑦f ≥ 𝜏} ⊆ {𝛥𝑦f ≥ 𝜏} holds, which implies P

[

𝛥𝑦f ≥ 𝜏
]

≤
[

𝛥𝑦f ≥ 𝜏
]

. Note that |𝛿𝑌 ,𝑖| are non-negative random variables. Thus,

y Markov’s inequality (Van der Vaart, 2000) and the linearity of the
xpected value, for any 𝜏 > 0,
[

𝛥𝑦f ≥ 𝜏
]

≤ P
[

𝛥𝑦f ≥ 𝜏
]

≤ 1
𝜏

(

∑

𝑖∈supp(𝛥𝑌 )

‖

‖

‖

[

𝑂𝑌𝑇 𝐹 𝑌𝑇
]

∇𝐹𝑌 ,𝑖
‖

‖

‖2
E[|𝛿𝑌 ,𝑖|]

)

≤ 𝑐
𝜏

(

∑

𝑖∈supp(𝛥𝑌 )

‖

‖

∇𝐹𝑌 ,𝑖‖‖2 E[|𝛿𝑌 ,𝑖|]

)

≤ 𝑐
𝜏
| supp(𝛥𝑌 )|max

𝑖
{‖
‖

∇𝐹𝑌 ,𝑖‖‖2}max
𝑖
{E[|𝛿𝑌 ,𝑖|]} (53)

where 𝑐 = ‖

[

𝑂𝑌𝑇 𝐹 𝑌𝑇
]

‖2 and | supp(𝛥𝑌 )| stands for the cardinality of
supp(𝛥𝑌 ). Since the distributions of 𝛿𝑋,𝑖 are independent of 𝑁 so are
E[|𝛿𝑋,𝑖|]. Hence, by (53) and Lemma 4.2, it follows that

[

𝛥𝑦f ≥ 𝜏
]

≤
𝑘𝑌
𝜏

| supp(𝛥𝑌 )|
𝑁

where 𝑘𝑌 > 0 is a constant independent of 𝑁 . This concludes the proof.
■

A.4. Proof of the results in Section 5

Proof of Theorem 5.1. First, we provide a data-driven solution to
the problem in (28). Following a procedure similar to the proof of
Theorem 3.1, Problem (28) can be written as in (10), with

𝛾 = 𝛽, 𝐿 =
[

𝑄1∕2𝑋
1∕2

]

, 𝑊 = 𝑋0𝐾, and 𝑧 = 𝑥0.
12

𝑅 𝑈
Then, the optimal input and state trajectories of (28) for a given 𝑥0 can
e computed as
∗
𝑇 = 𝑈𝐾(𝐼𝑁 −𝐾𝑊 (𝐿𝐾𝑊 )†𝐿)𝑊 †𝑥0,

𝐱∗𝑇 = 𝑋𝐾(𝐼𝑁 −𝐾𝑊 (𝐿𝐾𝑊 )†𝐿)𝑊 †𝑥0.

rom (29) we know that the time-varying controller that solves Prob-
em in (28) satisfies 𝑢(𝑡) = 𝐾 𝑡

LQR𝑥(𝑡), and it does not depend on the

nitial condition. Let 𝐔𝑡 and 𝐗𝑡 be as in (31). Notice that the 𝑖th column
f 𝐗𝑡 equals the state at time 𝑡 of the optimal state trajectory for (28)
ith initial state given by the 𝑖th column of the identity matrix. Then,
𝑡 = 𝐾 𝑡

LQR𝐗𝑡. To conclude, we show that if 𝐴 is invertible then 𝐗𝑡 is
nvertible. To this end, let 𝐴𝑡 = 𝐴 + 𝐵𝐾 𝑡

LQR denote the (time-varying)
tate matrix of the closed-loop system and notice that

𝑡 = (𝐼 − 𝐵(𝑅𝑡 + 𝐵𝖳𝑃𝑡+1𝐵)−1𝐵𝖳𝑃𝑡+1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐻𝑡

𝐴, (54)

here 𝑃𝑡 ⪰ 0 satisfies the Riccati equation (30). Using the push-through
dentity (𝐼 +𝑋𝑌 )−1𝑋 = 𝑌 (𝐼 + 𝑌 𝑋)−1, which holds for any matrices 𝑋,

such that (𝐼 + 𝑋𝑌 ) is invertible (Bernstein, 2009, Fact 2.16.16), 𝐻𝑡
an be written as

𝑡 = 𝐼 − 𝐵(𝑅𝑡 + 𝐵𝖳𝑃𝑡+1𝐵)−1𝐵𝖳𝑃𝑡+1
= 𝐼 − 𝐵𝑅−1

𝑡 (𝐼 + 𝐵𝖳𝑃𝑡+1𝐵𝑅
−1
𝑡 )−1𝐵𝖳𝑃𝑡+1

= 𝐼 − 𝐵𝑅−1
𝑡 𝐵𝖳𝑃𝑡+1(𝐼 + 𝐵𝑅−1

𝑡 𝐵𝖳𝑃𝑡+1)−1.

rom the last identity it follows that

𝑡(𝐼 + 𝐵𝑅−1
𝑡 𝐵𝖳𝑃𝑡+1) = 𝐼,

hich implies that 𝐻𝑡 is invertible with inverse 𝐻−1
𝑡 = 𝐼+𝐵𝑅−1

𝑡 𝐵𝖳𝑃𝑡+1.
inally, observe that, for 𝑡 ≥ 1,

𝑡 = 𝐴𝑡−1𝐴𝑡⋯𝐴0 = 𝐻𝑡−1𝐴𝐻𝑡−2𝐴⋯𝐻0𝐴.

ince the product of invertible matrices is invertible, it follows that if
is invertible then X𝑡 is invertible. ■
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